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Abstract 

Proteins are biological macromolecules composed of amino acids linked by 

peptide bonds. Their three-dimensional (3D) structures are still challenging to 

determine and the number of proteins with resolved tertiary structures is 

rather small compared to the number of known protein sequences. The 3D 

structures of proteins are essential for understanding their function, and thus 

biological processes orchestrating health and diseases. The 3D protein 

structure allows us to identify "binding pockets" and functionally relevant 

regions of the protein. Nowadays innovative approaches have been developed 

for fast determination of protein conformations. These include computer 

algorithms that predict the 3D structure of the protein from its polypeptide 

primary sequence. In this thesis, we use AlphaFold 2, an open-source software 

that uses available protein datasets and artificial intelligence (AI), to predict 

the 3D structure of proteins. In this study, AlphaFold 2 structure models were 

analyzed for randomly generated amino acid sequences and for well-known 

industrial biocatalysts halohydrin dehalogenases HheC and HheA. The random 

sequences were generated by the tool RandSeq, while the FASTA inputs for 

HheA and HheC were formed from the crystal structures 1ZMO and 1ZMT, 

respectively, downloaded from the Protein Data Bank. The AlphaFold 2 

conformations were analyzed using PyMOL and ChimeraX visualization 

software. While AlphaFold 2 could not reliably predict the structures of random 

sequences, as expected, the structures of the enzymes HheA and HheC in 

their monomeric and tetrameric states were predicted with high reliability. 

However, structural peculiarity like the entry of the C-terminal tail into the 

diagonal subunit of the HheC tetramer was not predicted. This study shows 

that AlphaFold 2 structures can be good starting conformations for molecular 

dynamics simulations while their use for molecular docking calculations should 

be taken with caution. 



Keywords: AlphaFold 2, 3D protein structure, haloalcohol/halohydrin 

dehalogenase, HheA, HheC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sažetak 

Proteini su biološke makromolekule sastavljene od aminokiselina povezanih 

peptidnim vezama. Njihove trodimenzionalne (3D) strukture još uvijek je 

teško odrediti, a broj proteina s rješenim tercijarnim strukturama prilično je 

malen u usporedbi s brojem poznatih proteinskih sekvenci. 3D strukture 

proteina bitne su za razumijevanje njihove funkcije, a time i bioloških procesa 

koji upravljaju zdravljem i bolestima. 3D proteinska struktura omogućuje nam 

identificiranje "veznih džepova" i funkcionalno relevantnih regija proteina. 

Danas se razvijaju inovativni pristupi za brzo određivanje konformacija 

proteina, a to uključuje i računalne algoritme koji predviđaju 3D strukturu 

proteina iz primarne sekvence polipeptida. U ovom diplomskom radu koristimo 

AlphaFold 2, softver otvorenog koda koji koristi dostupne skupove podataka 

o proteinima i umjetnu inteligenciju (AI) za predviđanje 3D strukture proteina. 

U ovoj studiji pomoću AlphaFolda 2 predviđene se strukture za nasumično 

generirane sekvence aminokiselina i za dobro poznate industrijske 

biokatalizatore halohidrin dehalogenaza HheC i HheA. Nasumične sekvence 

generirao je alat RandSeq, dok su FASTA ulazi za HheA i HheC formirani iz 

kristalnih struktura 1ZMO, odnosno 1ZMT, preuzetih iz baze Protein Data Bank 

(PDB). Predviđene konformacije analizirane su pomoću softvera za 

vizualizaciju PyMOL i ChimeraX. Iako AlphaFold 2 nije mogao pouzdano 

predvidjeti strukture nasumičnih sekvenci, kao što se i očekivalo, strukture 

enzima HheA i HheC u njihovim monomernim i tetramernim stanjima 

predviđene su s visokom pouzdanošću. Međutim AlphaFold 2 nije predvidio 

strukturnu osobitost ulaska C-terminalnog repa u dijagonalnu podjedinicu 

tetramera HheC. Ova studija pokazuje da strukture predviđene AlphaFoldom 

2 mogu biti dobre početne konformacije za simulacije molekulske dinamike, 

dok njihovu upotrebu za izračune molekulskog uklapanja treba uzeti s 

oprezom. 

 



Ključne riječi: AlphaFold 2, 3D struktura proteina, haloalkohol/halohidrin 

dehalogenaze, HheA, HheC 
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1. Introduction 

1. 1. The importance of three-dimensional structures of proteins 

 In 1838 Jacob Berzelius, a Swedish chemist, proposed the name protein 

for the material produced by plants as a food for animals. (1) Nowadays it is 

known that there are numerous proteins with a variety of functions such as 

cellular structural support, immune protection, reaction catalysis, transduction 

of cell signals, participating in DNA transcription, etc. The biological function 

of proteins depends on their tertiary and quaternary structures which result 

from the folding of polypeptide sequences and their mutual assembling, 

respectively. The three-dimensional structures (3D) of proteins are essential 

for understanding their function, and thus biological processes orchestrating 

health and diseases. The representation of the 3D protein structure allows us 

to identify "drug binding pockets" and functionally relevant regions of the 

protein. (2) 3D tertiary structures of proteins are experimentally determined 

by methods such as X-ray crystallography, nuclear magnetic resonance 

(NMR), and cryo-electron microscopy. However, these methods are complex, 

expensive, and time-consuming, and the resulting protein structure(s) 

represents one or a small number of protein conformations. The number of 

proteins with experimentally determined tertiary structures is rather small 

compared to the number of known protein sequences (210,180 PDB structures 

compared to 251,600,768 UniProt entries). Nowadays innovative approaches 

have been developed for fast determination of protein conformations. Such 

are computational models that predict the 3D structure of a protein from its 

polypeptide primary sequence. (3) 
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1. 2. 3D protein structure prediction by AlphaFold 2 

1. 2. 1. CASP organization and introduction to AlphaFold2 – How it 

all began 

 In 2018, Google's start-up, DeepMind presented an open source 

software AlphaFold at the Critical Assessment of Structure Prediction 

(CASP) competition of prediction structures of proteins from their primary 

sequences, that is solving the problem of protein folding. The CASP is an 

organization whose goal is to find a solution to the problem of 3D protein 

structure based on amino acid sequence. This competition has three 

categories: TBM (template-based modeling), FM (free modeling), and 

FM/TBM. (4,5) Contestants must submit their 3D models for proteins whose 

experimental structures have not yet been published, and they are 

analysed by independent reviewers. All models and structural analyses are 

publicly available. (4,6) 

 AlphaFold is a deep learning (DL) code based on a convolutional neural 

network (NN) which, from the target protein's amino acid sequence and 

multiple sequence alignment (MSA) features and statistics, outputs the 

protein structure in the form of a distogram (histogram showing inter-

residue distances). Alphafold also included following multiple Gradient 

Descent optimizations to find the structure that corresponds to a minimum 

at a potential energy surface. The basis of the AlphaFold approach is the 

observation that residues that are in spatial contact tend to show patterns 

of correlated mutations. (7) Although proteins mutate and evolve, the 

structures of related proteins remain relatively similar. 

 In 2020, the next version of AlphaFold, AlphaFold 2, was presented at 

the next CASP14 competition. This artificial intelligence (AI) system won 

the CASP14 competition by predicting 3D protein structures from amino 

acid sequences with accuracy at the atomic (that is experimental) level (8) 

and with much greater precision than any of the other competing methods. 
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AlpfaFold 2 is significantly different from its previous version; it uses amino 

acids as an input sequence to construct an MSA based on several protein 

sequence databases, to determine which parts of the sequence are prone 

to mutation and find the correlation between those parts. It also identifies 

proteins of similar structure that are used to build an initial representation 

of the target sequence (pair representation). (9) 

 

1. 2. 2. Architectural modules of AlphaFold 2 

 The AlphaFold 2 code is divided into three main modules: Search and 

Embedding, Evolutionary transformer (Evoformer), and Structural module 

(Figure 1). (10) 

 

 

Figure 1. A simplified architecture of the AlphaFold 2 model. The flow of information 

between 3 modules is described by arrows; s - number of sequences, r - number of residues, 

c - number of channels. (Figure taken from (10)) 

 

 The Search and Embedding is an input module. Based on the amino acid 

sequence of a target protein in the sequence databases, it finds 

(evolutionary) similar sequences through MSA and available 3D 

structures/templates using various databases (Uniref90, Uniclust30, 
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MGnify, Big Fantastic Database, PDB70...). This is followed by the 

generation of the MSA representation and the pair representation and by 

embedding evolutionary, physical and geometric constraints of protein 

structures into the architecture. 

 Evoformer is the second AlphaFold 2 module, the so-called coder that 

contains 48 NN blocks, each of which has two inputs –a processed MSA and 

an Nres × Nres array that represents residue pairs. Evoformer blocks have 

an attention-based architecture. (10) In comparison to the convolutional 

neural network (CNN), an advantage of Evoformer blocks lies in the fact 

that information can be exchanged, i.e. transferred among the MSA display 

and the 3D template display, meaning that the improvement of the MSA 

estimation in return physically correctly modifies the protein structures 

represented by the templates by taking directly the spatial and 

evolutionary relationships.  

 The Structural module is a decoder converting the processed MSA 

representation and pairwise representation into 3D coordinates of all atoms 

in a protein. It takes each amino acid residue as a separate object and 

predicts rotations and translations to represent the 3D structure of the 

protein. This decoder has two input elements; the first contains a linear 

projection of the first order of the MSA representation, while the second is 

the output of the pair from Evoformer where each residue is represented 

as a triangle whose vertex next to the obtuse angle indicates the Cα atom, 

while the other two peaks indicate the N-atom of the amino group and the 

C-atom of the carbonic acid. In the beginning, all frames are placed at the 

same point in the same orientation, and the output of the structural module 

is the 3D coordinates of all the protein atoms obtained by allowing 

simultaneous local refinement of all parts of the structure, which is done 

by the novel equivariant transformer in an iterative way using the whole 

network. This is termed ‘recycling’ and is related to approaches in computer 
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vision. Recycling steps are repeated three times to make the result as 

accurate as possible. (8) 

 In 2021, the publicly accessible AlphaFold Protein Structure Database 

(https://alphafold.ebi.ac.uk) was created with more than 360,000 

predicted structures from 21 organism proteomes. Today, this database 

has more than 200 million entries from human and 47 other organisms' 

proteomes, the predicted structure of which is available to everyone for 

free, with atomic coordinates in PDB format and Predicted Aligned Error 

(PAE, about which we will talk later) in JSON format. AlphaFold 2 reduced 

the number of human proteins without structural coverage to 29 from 

5027. The publicly available database of predicted protein structures opens 

the possibility of easier selection of preclinical models based on the 

similarity of proteins of different species to human proteins. (11) 

 

1. 2. 3. Limitations of AlphaFold 2 

 Despite its revolutionary efficiency in predicting the 3D structure of 

proteins, AlphaFold 2 has limitations, and many questions remain to be 

resolved. AlphaFold 2, for example, has a harder time predicting 

intrinsically disordered regions and loops of proteins, which are of great 

importance for drug design because they are located on the protein surface 

and are easily accessible to solvents and other proteins. Stevens and He 

(12) showed that AlphaFold 2 can only predict shorter loops (<20 amino 

acids) with high accuracy, while Azzaz et al. (13) showed that predicting 

the structure of membrane proteins with AlphaFold 2 is not reliable due to 

inconsistencies in the position of transmembrane domains. AlphaFold 2 also 

cannot predict structures with ligands, complexes with DNA or RNA, or 

post-translational modifications such as methylation, phosphorylation, or 

glycosylation. (14) Since its algorithm is based on MSAs and requires 

https://alphafold.ebi.ac.uk/
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databases of known 3D structures (such as PDB), AlphaFold 2 cannot 

predict new structures and the use of evolutionary information from larger 

MSAs requires powerful computer processors, and their structure prediction 

takes a lot of time as the protein length increases. (5) 

 

1. 3. Protein structure similarity metrics 

 Various metrics were defined and used to evaluate the predicted protein 

conformations. The most commonly used metrics for protein structure 

similarity are the Root-Mean-Square Deviation of atomic positions (RMSD), 

the Global Distance Test (GDT), and the Local Distance Difference Test 

(LDDT).  

 The simplest evaluation parameter is RMSD, usually expressed in 

angstroms (Å), which calculates the average deviation between aligned 

protein structures based on the positions of Cα atoms of residues. However, 

some of its characteristics, such as insensitivity to missing parts of the model 

and the dominance of outliers in poorly predicted regions, considerably limit 

its usefulness for evaluating the quality of structural predictions. (15)   

 To mitigate the sensitivity of RMSD to regions that deviate significantly 

between two aligned structures, the dimensionless Global Distance Test (GDT) 

was introduced. GDT is also calculated over the backbone Cα atoms, but it is 

calculated with the percentage of Cα atoms that are found within certain cutoff 

distances of each other. It is expressed as a percentage from 0 % (a 

meaningless prediction) to 100 % (a perfect prediction), that is structures are 

more similar with the higher GDT percentage. (16) One of the advantages of 

GDT is that strongly deviating atoms do not significantly affect the result. The 

CASP competition uses the Global Distance Test Total Score (GDT_TS), with 

cut-off distances of 1 Å, 2 Å, 4 Å, and 8 Å, and whose value can be calculated 
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via the free online Local Global Alignment tool (LGA), 

http://linum.proteinmodel.org/AS2TS/LGA/lga.html. (17) 

 To overcome the limitations of RMSD, in addition to GDT, LDDT metric 

was developed. LDDT provides a superposition-free result and estimates the 

local distance differences of all atoms in the model including side chain atoms. 

The result is the average of four fractions calculated using thresholds of 0.5 

Å, 1 Å, 2 Å, and 4 Å, expressed as a percentage (from 0 to 100 percent). (15) 

 

1. 4. Enzymes and their importance 

 Enzymes are biocatalysts that increase the reaction rate and accelerate 

the conversion of substrates into products, by reducing the activation energy 

of the reaction. They are divided into oxidoreductases, transferases, 

hydrolases, lyases, isomerases, and ligases (synthetases). (18) Lyases are 

enzymes that catalyse the breaking of chemical bonds (known as elimination 

reaction) between carbon atoms and between carbon and oxygen, sulphur or 

nitrogen, and creating a new double bond or ring structure. (19) They are 

found in cellular processes such as the citric acid cycle, and the greatest 

application of lyases is a production of L-DOPA, a drug used to treat 

Parkinson's disease. (20) 

 Haloalcohol dehalogenases, halohydrin hydrogen-halide lyases, or 

halohydrin dehalogenases are enzymes isolated from bacteria that can grow 

on vicinal haloalcohols. They use the Ser-Tyr-Arg catalytic triad to deprotonate 

the haloalcohol oxygen which then attacks the halogen-bearing carbon atom, 

producing an epoxide and halide ion (Figure 2). (21) It is believed that arginine 

activates tyrosine which, as a catalytic base, takes a proton from the 

halohydrin substrate. The residue serine most likely binds the substrate while 

the adjacent carbon approaches the alcohol oxygen of the substrate, releasing 

a halogen ion. (22) Currently, six different haloalcohol dehalogenases have 

http://linum.proteinmodel.org/AS2TS/LGA/lga.html
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been isolated, which, based on the similarity of the amino acid sequence, are 

grouped into three subtypes – A, B, or C. From the sequence and structural 

similarity, it was assumed that the A and C type enzymes have common 

ancestors, while type B enzymes have different precursors. (23) Their 

sequences show that they are all evolutionarily related to NAD(P)(H)-

dependent short-chain dehydrogenase/reductase (SDR).  

 

 

Figure 2. Haloalcohol/halohydrin dehalogenases catalyse alcohol-ketone 

conversions. Deprotonation of the haloalcohol oxygen-induced attack to the halogen-bearing 

carbon atom, producing an epoxide and halide ion. (Figure taken from (22)) 

 

 Haloalcohol dehalogenases can be found in both Gram-negative and 

Gram-positive bacteria. (23) In the Protein Data Bank (PDB) under PDB ID 

case 1ZMO is the crystal structure of haloalcohol dehalogenase of A type, 

HheA, isolated from Arthrobacter sp. AD2. It is a tetramer consisting of four 

identical subunits. (Figure 3A) The structure that has 35% sequence identity 

with the 1ZMO structure is in the PDB under the number 1ZMT. (Figure 3B) 

1ZMT is the crystal structure of C-type haloalcohol dehalogenase, HheC, 

isolated from Agrobacterium radiobacter AD1. (21,24) This enzyme catalyses 

the dehalogenation of aliphatic and aromatic vicinal haloalcohols such as 1,3-

dichloro-2-propanol and 2-phenyl-1-chloro- 2-ethanol, thereby producing HCl 

and corresponding epoxides.  
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Figure 3. Haloalcohol dehalogenase structures in PDB. (A) 1ZMO - crystal structure of 

haloalcohol dehalogenase A type, HheA and (B) 1ZMT - crystal structure of C-type haloalcohol 

dehalogenase, HheC. (Figures taken from (21,24))  

 

 

 These biocatalysts intrigued us to examine the accuracy and precision 

of structures predicted by AlphaFold 2, with using the 1ZMO and 1ZMT PDB 

structures as references. 
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2. Aims of Thesis 

AlphaFold 2 is an AI program for the prediction of 3D coordinates of 

proteins starting from their primary amino acid sequences. Knowing the 3D 

structure of a protein is essential for finding its active sites and functionally 

relevant regions/hot spots. 

The first goal of the research study performed is to test the ability of 

AlphaFold 2 to predict protein structure based on a randomized amino acid 

sequence. The hypothesis is that AlphaFold 2 will fail to predict such 

structures, given that there are no related sequences to them. 

The second goal is to verify the precision and accuracy of AlphaFold 2 in 

predicting the 3D structures of the (hypothetical) monomers of haloalcohol 

dehalogenases HheA and HheC, and their mutants. The hypothesis is that 

AlphaFold 2 will successfully predict the 3D structures of these monomers and 

their mutants since there are available crystal structures for HheA and HheC 

as well as other halohydrin dehalogenases in the PDB database, which then 

facilitates the use of these molecules for research purposes. 

The third goal of the performed study is to verify the precision and 

accuracy of AlphaFold 2 in predicting the 3D structures of tetramers of 

haloalcohol dehalogenases HheA and HheC. The hypothesis is that AlphaFold 

2 will have difficulty predicting the 3D structures of these tetramers, which 

means that some other method will have to be used or invented to reveal their 

3D structure. 
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3. Materials and Methods 

 In this study AlphaFold 2 version 2.1.1 was applied. AlphaFold 2 was 

installed on the Isabella computer cluster. Isabella is a computer cluster of 

the University Computing Centre (Srce) of the University of Zagreb, which was 

created in 2002 and has been enabled for non-profit computations. (25) 

Isabella belongs to the High-Performance Computing (HPC) group of clusters, 

i.e., clusters with high efficiency, and is intended for large parallel 

computations that require large amounts of processor cores, graphics 

processors, and working memory. (26) The user accesses Isabella using the 

Secure Shell (SSH) protocol, through the teran.srce.hr access server. (27) In 

order to access SSH, it is necessary to install PuTTy. Putty is an open-source 

software, developed by Simon Tatham. (28) 

 Input for AlphaFold 2 is a primary sequence in the FASTA format. The 

FASTA sequences of amino acids for the structures 1ZMO and 1ZMT were 

downloaded from the RCSB PBD database. These are X-ray structures of wild-

type (WT) haloalcohol dehalogenases HheA and HheC, respectively. The 

resolution of 1ZMO crystal structure is 2.00 Å, while the resolution of 1ZMT 

structure is slightly better, at 1.70 Å. 1ZMT has a longer amino acid sequence 

(254) than 1ZMO (244). (21,24) The FASTA representations for the 1ZMO and 

1ZMT mutants were also created, as shown in Figures 4 and 5, respectively. 

The 1ZMO mutant has an amino acid change at position 178, where the amino 

acid asparagine is replaced by the amino acid alanine (N178A). The 1ZMT 

mutant is a quadruple mutant, which means that the substitutions occurred 

at four positions; at position 84, proline was replaced by valine (P84V), at 

position 86, phenylalanine was replaced by proline (F86P), and threonine was 

replaced by alanine at position 134 (T134A) and asparagine by alanine at 

position 176 (N176A). 
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Figure 4. FASTA formats of the PDB structure 1ZMO and the N178A 1ZMO mutant. 

The mutated position is marked with a red arrow. 

 

 

Figure 5. FASTA formats of the structures 1ZMT and corresponding quadrupole 

mutant. Mutated positions are marked with arrows; red - P84V, blue - F86P, green – T134A 

and purple - N176A. 

 

 

 After creating the FASTA formats of studied WT dehalogenases and their 

mutants, a script for running AlphaFold 2 was formed by following the 

instructions that can be found on the website 

https://wiki.srce.hr/display/RKI/Alphafold2. An example of my script can be 

seen in Figure 6. It is important that the script name ends with the extension 

.sge, otherwise, AlphaFold 2 will not give results. 

 

https://wiki.srce.hr/display/RKI/Alphafold2
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Figure 6. Alphafold.sge script used for running in silico experiment on the cluster 

Isabella.  

 

 AlphaFold 2 starts running, and the time required to display the results 

depends on the length of the amino acid sequence, the stages of search and 

preprocessing of the input, relaxation, and locking of the structure. (10) There 

is another script, ParallelFold for running Alphafold 2 jobs on Isabella. 

Parallelfold is a modified script of Alphafold.sge and is used for parsing the 

CPU (MSA and template searching) and GPU (model prediction) parts. (29) 

First, it is necessary to run a script for the CPU part, and then for the GPU part 

(Figures 7A, 7B). This approach enables enhanced visualization of AlphaFold 

2 quality/confidence metrics by using a relevant script for visualization, to see 

graphs for sequence coverage, predicted LDDT (pLDDT) per position, and PAE 

(Figure 8).  

In the case of predictions of structures of tetramers of halohydrin 

dehalogenases HheA and HheC, in the cpu.sge and gpu.sge scripts (Figure 7), 

instead of „monomer“ the command „multimer“ is used. 

 

 

 

 

 



14 
 

 

Figure 7. An example for cpu.sge and gpu.sge scripts. (A) shows an example of cpu.sge 

script for 1ZMO monomer. The flag marked in red ''-usegpu=False'' informs us that the GPU 

is not used, but the CPU is, while -f stops AlphaFold 2 after creating feature.pkl in the output 

directory. (B) shows an example of gpu.sge script for 1ZMO monomer. We started the same 

job in the same directory and feature.pkl must be present in the output folder. 

 

 

 

Figure 8. An example of the visualization.sge script. The image shows the script for the 

1ZMO monomer, made according to the rules written on the Srce website. The path to the 

directory with the results (-i), the path to the directory where the images will be created (-o) 

and the name of the image (-n) are circled in red. 
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 To investigate the ability of AlphaFold 2 to predict 3D structures from 

random protein sequences, that are not available in PDB, we used a Random 

Protein Sequence generator (RandSeq). RandSeq is a free web tool that 

generates random protein sequences (https://web.expasy.org/randseq/).  

 The results were analysed using free molecular visualization programs, 

PyMOL and UCSF ChimeraX. In this thesis, structures are represented in 

PyMOL. Otherwise, the name of the drawing software is given. For the 

calculation of LDDT, the basic LDDT tool is available at 

https://swissmodel.expasy.org/assess. SWISS-MODEL is a web tool that uses 

homology modeling to predict the 3D structure of proteins. (30) 

 

 

 

 

 

 

 

 

 

 

https://web.expasy.org/randseq/
https://swissmodel.expasy.org/assess
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4. Results 

4. 1. AlphaFold 2 predicts 3D protein structures poorly from randomly 

generated amino acid sequences 

To test the capabilities of AlphaFold 2, we decided to use RandSeq 

(https://web.expasy.org/randseq/) to generate random protein sequences. 

The hypothesis was that AlphaFold 2 could not predict such structures. Before 

randomly generating a protein sequence, the length of the sequence (from 

200 to 9999 amino acids) and the composition of the sequence, i.e. proportion 

of amino acids must be determined. 200 amino acids were chosen for the 

length of the sequence and the specific proportions of individual amino acids 

were defined in three different ways. The first random amino acid sequence 

had the average composition of 20 amino acids in the proteins from 

UniProtKB/Swiss-Prot database (Figure 9A); the second one had the 

composition that was chosen by slightly and arbitrarily changing average 

composition (Figure 10A), and the third one was strongly disturbed from the 

average composition of proteins (Figure 11A). The FASTA format was chosen 

as the output so that the resulting sequences could directly be run by 

AlphaFold 2. In all three cases, pLDDT values were low meaning that all 

predicted conformations are of low reliability. According to pLDDT values the 

predicted AlphaFold 2 conformations or their parts are categorized as: pLDDT 

<50 very low confidence, 50-70 low confidence, 70-90 high confidence, >90 

very high confidence, i.e. correctly predicted 3D protein structures. (15) 

 

 

 

https://web.expasy.org/randseq/
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Figure 9. AlphaFold 2 structure outputs for the primary sequence with average 

amino acid composition are irregular. (A) Average percentages of amino acids suggested 

by the RandSeq online tool, (B) the FASTA format for the random amino acid sequence with 

average composition shown in 9A, and (C) the five mutually highly dissimilar 3D structures 

predicted by AlphaFold 2 for the random sequence shown in 7B, visualized in PyMOL. The 

average RMSD is 16.50 Å, with pLDDT values ranging from 24.42 % to 28.92 %. 

 

Figure 10. AlphaFold 2 generated 3D protein structures for a primary sequence with 

arbitrary composition have low pLDDT values and a small percentage of mutual 

alignment. (A) Small deviation in amino acid proportions from the average percentages 

shown in Figure 9A, and (B) the corresponding FASTA input. (C) The five 3D structures are 

shown in different colours with pLDDT values from 34.18 % to 37.57 %, shown by PyMOL. 

The average RMSD is 16.75 Å. 
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Figure 11. AlphaFold 2 protein structures predicted for the primary sequence with 

amino acid proportions very different from the average values. (A) Big deviation in 

amino acid proportions from the average percentages shown in Figure 9A, and (B) the 

corresponding FASTA input. (C) The 3D structures are shown in PyMOL, with pLDDT scores 

from 28.70 % to 32.74 %. The average RMSD is 6.12 Å. 

 

4. 2. Amino acid substitutions do not significantly affect the 

conformations of monomeric subunits of the halohydrin dehalogenase 

enzymes HheA and HheC 

4. 2. 1. AlphaFold 2 predictions for the HheA monomer 

In order to determine the reliability of AlphaFold 2 for protein modeling, 

the sequence of amino acids for the dehalogenase HheA was taken from the 

PDB structure 1ZMO, and the 3D conformations of its monomeric and 

tetrameric forms were predicted. The monomer and tetramer conformations 

were also predicted for the HheA N178A mutant in which the asparagine at 

position 178 close to the catalytic triad, was replaced by alanine. 

The hypothesis was that AlphaFold 2 would more accurately model 

monomers than multimers and that there would be no significant difference 

between the predicted conformations of the WT monomer and the N178A 

mutant. 
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Figure 12A shows local LDDT scores along the FASTA sequence for the 

best, top-ranked structure predicted by AlphaFold 2 for the HheA monomer as 

assessed against the crystal structure 1ZMO as a reference structure. The 

local LDDT scores in Figure 12A as well as the LDDT total score were calculated 

using the previously mentioned online tool Structure Assessment Tool 

(https://swissmodel.expasy.org/assess). The tool is designed to compare 

single chains, which means that the first chain in the structure of the desired 

model is compared with the first chain of the reference structure. Only amino 

acid chains connected by peptide bonds are taken into account for the 

calculation, while everything else is ignored (water, ligands, DNA). (2) Figure 

12B depicts the comparison of local pLDDT values for amino acid residues for 

five predicted monomeric structures for HheA as assessed by AlphaFold 2. 

In comparison with the crystal structure of the 1ZMO subunit, the 

greatest deviation in the ranked_0 model (Figure 12A) is observed for the 

amino acid residue Tyr143. The difference in positions of Tyr143 in the crystal 

1ZMO structure and in the modeled structure is shown in Figure 13. Figure 

13C provides a visual representation of the excellent alignment of the 

secondary structure elements between crystal and ranked_0 structures of 

monomer. In Figure 13D the regions with the lower local LDDT values 

corresponding to amino acids 190-205 and the C-terminal tail (Figure 12) are 

circled. 

 

https://swissmodel.expasy.org/assess


20 
 

 

Figure 12. AlphaFold 2 conformations for hypothetic HheA monomer have high 

predicted pLDDT scores. (A) Local LDDT values of monomer structure obtained by 

AlphaFold 2 were assessed against a monomer subunit from the PDB structure 1ZMO of the 

WT HheA enzyme as a reference. Deviation in (A) circled green corresponds to the 143rd 

amino acid residue, tyrosine, with a local LDDT value of 51.90 %. Global LDDT is 96.13 %. 

(B) Variation of AlphaFold 2 pLDDT values for five structures predicted for HheA monomer.  
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Figure 13. Alphafold 2 correctly predicts the conformation of the 1ZMO monomeric 

subunit. (A) Alignment of the experimental 1ZMO subunit A (pink) with AlphaFold 2 

predicted WT (cyan) and N178A mutant (green) monomer. RMSD values are ~ 0.23 Å. (B) 

The amino acid Tyr143 is circled red. (C) Alpha helices (cyan), beta sheets (purple), and 

loops (pink) are well reproduced by AlphaFold 2. (D) The alpha coil and the C-terminal tail 

represent the dynamic parts of HheA monomer. In addition to Tyr143, the catalytic residues 

Ser134, Tyr147 and Arg151 are shown in stick representation.  

 

In the case of the N178A mutant, the smaller local LDDT value with 

1ZMO structure of WT HheA as a reference has been observed for the mutated 
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amino acid residue which is illustrated in Figures 14A and 14B obtained using 

the online Structure Assessment Tool, https://swissmodel.expasy.org/assess. 

 

 

Figure 14. The amino acid N178A mutation leads to a significantly lower lDDT score 

for the mutated residue while the rest of the conformation is the same in WT and 

N178A mutant. (A) The arrow indicates the amino acid asparagine (ASN), located at the 

178th position on chain A, and its local lDDT value of 84 % as compared to 1ZMO monomer 

conformation as a reference. (B) The arrow indicates the amino acid alanine (ALA), which 

replaced the amino acid asparagine of the WT HheA enzyme. It is associated with a 

significantly lower local lDDT value of 54 %. Areas marked in dark blue have a high lDDT 

score (70-100), while areas marked in green indicate low local lDDT scores (50-70). 

 

https://swissmodel.expasy.org/assess


23 
 

Figure 15 demonstrates the usage of the metric Predicted Alignment 

Error (PAE) in AlphaFold 2. PAE indicates the expected positional error at 

residue x if the predicted and actual structures are aligned at residue y (using 

Cα, N, and C atoms), that is a distance error for every pair of residues. (31) 

 

Figure 15. Predicted Alignment Error (PAE) plots for WT HheA monomeric models. 

(A) PAE output of model 1 shown in ChimeraX – structure colored according to pLDDT values. 

(B) PAE plots for the first 5 models were obtained with AlphaFold 2. The coloring is according 

to PAE values 0 - 31.75 Å. 
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4. 2. 2. AlphaFold 2 predictions for the HheC monomer 

In the PDB, another halohydrin dehalogenase biocatalyst HheC is found 

under the PDB ID 1ZMT, which shares 35% sequence identity with 1ZMO, that 

is HheA isoform. (21) The analogous calculations and analysis of the predicted 

conformations were conducted for the enzyme HheC as for the dehalogenase 

HheA (Figures 16, 17, 19 and 20). In addition, considering the essential role 

of the catalytic triad Ser-Tyr-Arg, we also checked the reliability of AlphaFold 

2 in predicting its conformation in the case of HheC (Figure 18).  

In Figures 16A and B the local lDDT and pLDDT values were shown for 

top ranked_0 structure and all five models, respectively, obtained by 

AlphaFold 2 for the monomeric conformation of WT HheC. The local lDDT 

values were calculated with the structure of the subunit/chain A from the 

crystal structure 1ZMT as a reference. In Figure 17, the explanation of the low 

lDDT value that is poor agreement with the crystal position of the amino acid 

residue Pro84 (Figure 16A), is provided through visualization using PyMOL. 

Figure 18 shows the excellent reproduction of positions of the catalytic amino 

acid residues in the ranked_0 model, with 1ZMT structure as a reference. 

Figure 19 represents an evaluation of the AlphaFold2 results for the 

quadrupole mutant P84V/F86A/T134A/N176A and Figure 10 shows PAE 

diagrams for five output models of HheC monomeric structure. 
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Figure 16. AlphaFold 2 predicted the monomer structure of HheC with a high global 

LDDT score. (A) Local lDDT values of monomer structure obtained by AlphaFold 2 assessed 

by a monomer subunit from the PDB structure 1ZMT of the WT HheC enzyme as a reference. 

Deviations in (A) circled green correspond to the 84th and 248th amino acid residue, proline 

and arginine, with local LDDT values of 63.10 % and 32.34 %. Global LDDT is 97.25 %. (B) 

AlphaFold 2 pLDDT values for five modeled structures for the HheC monomer.  
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Figure 17. Incorrectly predicted proline position in the predicted WT monomer 

conformation with the 1ZMT structure as a reference. Alignment of the experimental 

1ZMT subunit A (purple), AlphaFold 2 predicted WT monomer (pink), and quadrupole 

monomer mutant (yellow) and. The wrongly predicted Pro84 is shown on the right, which is 

also confirmed by the local LDDT plot (Figure 16A). Arg248 is not shown in the figure, but it 

is located on the C-terminal tail. 

 

Figure 18. AlphaFold 2 correctly predicts the positions of the catalytic amino acid 

residues in WT and mutant monomeric structures with 1ZMT as a reference. 

Alignment of WT 1ZMT monomer (green) and AlphaFold 2 predicted 1ZMT monomer mutant 

(blue) indicates that the positions of the catalytic sites Ser132, Tyr145, and Arg149 do not 

change with P84V/F86A/T134A/N176A mutations. RMSD is 0.18 Å. 
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Figure 19. The change in amino acids leads to their significantly lower local lDDT 

scores as calculated and visualized by the Structure Assessment Tool. (A) Arrows 

indicate the amino acids proline (PRO) at position 84, phenylalanine (PHE) at position 86, 

threonine (THR) at position 134 and asparagine at position 176. (B) Arrows show valine (VAL) 

instead of proline at position 84, proline instead of phenylalanine at position 86, alanine 

instead of threonine at position 134, and asparagine at position 176. Each of them has an 

lDDT value associated with it. The chain is colored according to the values of the local lDDT 

score - areas marked in dark blue have a high lDDT score (70-100), while areas marked in 

green indicate low lDDT scores (50-70). 

 

A B 
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Figure 20. Predicted Alignment Error (PAE) plots for predicted WT HheC monomeric 

structures. (A) PAE output of model 1 shown in ChimeraX – conformation colored according 

to pLDDT values. (B) PAE values for the first 5 models obtained with AlphaFold 2. 

 

4. 3. AlphaFold 2 successfully predicts symmetric homotetrameric 

conformations 

After testing AlphaFold 2 in predicting monomer/subunit structures, we 

decided to find out how it would perform in predicting structures of tetramers 

of halohydrin dehalogenases HheA and HheC. The hypothesis is that AlphaFold 

2 may have difficulty predicting the 3D structures of these multimers. Figure 

19 shows local lDDT values calculated for predicted tetramers of HheA and 

HheC using the X-ray structures 1ZMO and 1ZMT as references. In Figure 20 

it is visible that for HheA the tetrameric structure is predicted better than in 

the case of HheC. 
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Figure 21. Local lDDT scores for the homotetrameric structures of HheA and HheC. 

(A) Local lDDT of WT HheA tetramer and (B) WT HheC tetramer modeled by AlphaFold 2 and 

compared with their PDB structures 1ZMO and 1ZMT, respectively. Deviations circled green 

represent wrong predictions of amino acid positions that deviate considerably from their 

crystal orientations, while those in blue are wrong backbone predictions. Global lDDT is (A) 

92.12 % and (B) 82.04 %. 
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Figure 22. Comparison of WT AlphaFold 2 tetrameric top-ranked models with the 

crystal structures. (A) For HheC - AlphaFold 2 predicted structure (green) and 1ZMT 

structure (white) and (B) HheA -  AlphaFold 2 predicted multimer (white) and 1ZMO structure  

(pink). The RMSD values are 0.373 Å for the 1ZMO multimer and 0.620 Å for the 1ZMT 

multimer. 
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5. Discussion 

The determination of 3D structures of proteins, as well as the discovery 

of drugs interacting and binding to them, is a comprehensive and expensive 

research process that requires a great deal of time and money. To save time 

in the lab and money on the necessary experiments, we focused on predicting 

protein conformations using artificial intelligence and machine learning. 

AlphaFold2 is an AI software we decided to test for the purpose of predicting 

enzyme structures and functionally relevant regions of the protein. 

Firstly, we generated randomly 200 amino acid long sequences to test 

whether AlphaFold 2 could predict meaningful structures based on arbitrary 

primary sequences. Figure 9C shows the structure obtained from the sequence 

(Figure 9B) which was created by the composition of the average amino acids 

in the protein suggested by the RandSeq site (Figure 9A). It is visible that the 

3D models predicted by AlphaFold 2 are badly mutually aligned and that there 

is no agreement among them. This is indicated by the high average RMSD 

value of 16.50 Å (well-predicted structures have RMSD value <1) and pLDDT 

values ranging from 24.42 % to 28.92 %. According to pLDDT values, the 

predicted AlphaFold 2 conformations or their parts are categorized as pLDDT 

<50 very low confidence, 50-70 low confidence (excluding 70), 70-90 high 

confidence (including 70), >90 very high confidence, i.e., correctly predicted 

3D protein structures. This means that the predicted structures are of very 

low confidence. We see almost the same performance in Figure 10, where the 

structure under C was produced from a sequence (Figure 10B) created by a 

small change in the average proportions of amino acids (Figure 10A). The 

average RMSD value of 16.75 Å is similar to the previous one, while the pLDDT 

values are slightly higher and range from 34.18 % to 37.57 %, which is again 

a sign of low confidence and failed prediction by AlphaFold 2. We had a little 

better luck with the structure visible in Figure 11C, which we obtained by 

completely perturbing the average amino acid composition of the protein. 
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Despite a slightly better average RMSD of 6.12 Å, the pLDDT values range 

from 28.70 % to 32.74 %. The models we received were disappointing but 

also expected. Namely, AlphaFold 2 needs templates like those from the PDB 

database for the proteins with high MSA scores, which it uses as guidelines 

for predicting structures. As an AI tool, AlphaFold 2 learns from data, and 

since the protein sequences are not random, there are no templates available 

for randomly generated primary sequences of amino acids. The underlying 

reasons for the lack of accuracy in the case of random amino acid sequences 

are the lower matches from the MSA and the input sequences, and the lack of 

quality and representative structural templates. In short, in all three cases, 

the problem is that not enough related sequences and structures are known, 

so AlphaFold 2 did not have enough "prior knowledge" for quality prediction. 

We also used AlphaFold 2 for the prediction of structures of the well-

known biocatalysts halohydrin dehalogenase HheA and HheC in their 

tetrameric and hypothetical monomeric states. (23) For the former extensive 

molecular dynamics simulations have already been done. (32,33) The FASTA 

inputs of haloalcohol dehalogenase HheA and HheC were generated from their 

crystal structure 1ZMO and 1ZMT, respectively, available in the PDB database. 

Both dehalogenases are symmetric homotetramers. We used AlphaFold 2 to 

predict the structures of monomers and tetramers of these two 

dehalogenases. 

Figure 12 shows two graphs for the dehalogenase HheA; Figure 12A 

shows the local lDDT values of top ranked_0 monomeric structure calculated 

using the online tool Structure Assessment Tool 

(https://swissmodel.expasy.org/assess) with regard to the crystal 1ZMO 

subunit A as a reference. Figure 12B shows the predicted plDDT values 

calculated by AlphaFold 2 on the MSA basis. Along with the plot, the Structure 

Assessment Tool offers results in the table form, from which the local LDDT 

score of each amino acid can be read, as well as its position. The low local 

https://swissmodel.expasy.org/assess
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lDDT value of 51.90 % is observed for tyrosine which is in 143rd place in the 

primary sequence. For comparison, almost all pLDDT values are greater than 

70 (except for the C terminal end). The difference in positions of Tyr143 in 

the ranked_0 and crystal 1ZMO structure is illustrated in Figure 13. It is 

located at the very entrance to the binding site on the monomer surface. Other 

structural elements of the HheA subunit are well predicted as visualized in 

Figure 13C by alignment of various secondary structure elements (alpha coils 

– cyan, beta-sheet – purple, loops – pink). In Figure 13D the regions with the 

low local LDDT values are marked by the red circle. They correspond to alpha 

helix formed by amino acids 190-205 and the C-terminal tail. Corresponding 

structural elements have been shown in dehalogenase HheC to be the most 

dynamic parts. (32) 

Figure 14 was also obtained using the Structure Assessment Tool for the 

purpose of visualizing the change in the local LDDT value due to single-point 

mutation N178A. In Figure 14A we see the modelled monomeric structure for 

WT HheA with asparagine at position 178 and its LDDT score is equal to 84 

%. In Figure 14B the AphaFold 2 model for the N178A HheA mutant is shown, 

the lDDT score for Ala178 is significantly lower and is 54 %. In a global view, 

the 3D structure of the HheA monomer subunit is predicted with high 

confidence. The LDDT total score is 96.13 %, while the RMSD is 0.23 Å, which 

is a sign of high confidence (LDDT > 90 %, RMSD < 1 Å).  

Figure 15 shows the PAE plots of 5 models of WT 1ZMO monomer, 

focusing on the first result_model_1. Predicted Alignment Error (PAE) is an 

output of the AlphaFold 2 system (limited to 31.75 Å) that researchers can 

use to estimate the reliability of the relative position and orientation of 

different parts of the protein model (e.g., of two domains). Groupings on the 

PAE plot point to the existence of different structurally distinguished parts and 

domains within protein. It is usually presented as a heatmap, with residue 

numbers shown along the vertical (y = aligned residue) and horizontal (x = 
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scored residue) axes and the color of each pixel indicating the PAE value for 

the corresponding residue pair. As mentioned before, PAE indicates the 

expected positional error at residue x if the predicted and actual structures 

are aligned at residue y (using Cα, N, and C atoms). The predicted 

conformation visible in Figure 15A was colored according to lDDT values and 

generated in ChimeraX. Expected position error is expressed in Ångströms, 

and the structure is considered well-predicted and realistic if the PAE values 

are low (0-10, blue color), while it should not be given biological and structural 

interpretation if the PAE values are high (20-30, red color). (31) It is clearly 

visible from the picture that the structure is predicted correctly (high 

confidence in position and orientation), and somewhat higher PAE scores can 

be seen for residues around position 195, which is in accordance with Figure 

12B, where pLDDT is around 75 % for these amino acids. The PAE output of 

the 1ZMO N178A mutant is not shown, as it is almost identical. 

For the haloalcohol dehalogenase HheC which is the biocatalyst widely 

used in industry, as a reference for predicted structures we used the X-ray 

structure with the PDB ID 1ZMT. In the case of the HheC enzyme, in addition 

to estimating the quality of predicted structures, we also focus on details 

regarding the position and orientation of its catalytic residues Ser132, Tyr145 

and Arg149. The 3D structure of HheC is predicted with high confidence. The 

LDDT total score is 97.25 %. The largest deviations from the structures of 

subunits in the crystal structure 1ZMT were observed for the amino acid 

residues Pro84 and Arg248 (Figure 16A). The LDDT values for Pro84 and 

Arg248 are 63.10 % and 32.34 %, respectively, which is a sign of low 

confidence. In difference of unconfidently predicted positions of these amino 

acid residues (Figure 17), positions and orientations of the catalytic residues 

Ser132, Tyr145 and Arg149 are predicted with high confidence (Figure 16) in 

monomeric models of both WT and quadrupole P84V/F86A/T134A/N176A 

mutant of dehalogenase HheC, despite the fact that the quadruple mutations 



35 
 

are close to the catalytic sites. (33) The positions of mutated amino acid 

residues are predicted mostly with low to very low confidence (lDDT < 70) in 

WT and mutant HheC proteins (Figure 19). Figure 20 shows PAE plots of 5 

predicted models of the WT HheC monomer, focusing on the first resulted 

model. It is clearly visible from the picture that the structure is correctly 

predicted (high confidence in position and orientation), and high PAE scores 

can also be seen around 245th residue, which is confirmed in Figure 16A, 

where the LDDT for Arg248 is 32.34 % for. The PAE output for the monomeric 

structures predicted for the quadruple mutant of HheC is not shown, as it is 

almost identical. 

We also used AlphaFold 2 to predict multimeric structures of the studied 

halohydrin dehalogenases HheA and HheC which are both natural tetramers. 

Figure 21 shows the local lDDT values of HheA and HheC tetramer subunits 

calculated with their PDB structures 1ZMO and 1ZMT, respectively, as 

references. Deviations in (A) circled green correspond to the 96th and 100th 

surface amino acid residues, glutamic acid and arginine, with local LDDT 

values of 50.69 % and 48.01 %, respectively. The incorrect backbone 

prediction is indicated by the blue circles at the 206th and 230th positions in 

the sequence. The deviations under (B) for HheC are various, and most of 

them indicate incorrectly predicted amino acids of proline (Pro59, Pro84, 

Pro138 and Pro244) and phenylalanine (Phe12, Phe186 and Phe243). 

AlphaFold 2 predicts the tetramer of HheA with a high global lDDT score of 

92.19% and the RMSD values with the referent crystal structure 1ZMO of 

0.373 Å (Figure 22B). The global lDDT for HheC is lower. It is 82.04 %. Figure 

22A shows the alignment of the top-ranked AlphaFold 2 tetramer model 

(green) with the crystal structure 1ZMT of WT HheC (white), and the 

corresponding RMSD is 0.620 Å. AlphaFold 2 failed to predict correctly position 

of the C-terminal tail which is in the predicted structure placed at the entrance 

of the binding site of its chain, while in the crystal structure, it is positioned 
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at the entrance of the binding site of the diagonal subunit. Consequently, 

conformations of close structural elements are also predicted with lower 

confidence (Figure 22A). WT HheA and HheC tetramer mutants showed 

analogous results and are, therefore, not shown. 

The use of the AI algorithm AlphaFold 2 requires a high-performance 

computer cluster for running and specialized algorithms for analyzing its 

outputs, as well as extensive knowledge and experience in bioinformatics and 

structural biology. For analysis of AlphaFold 2 results the open accessed 

visualization software PyMOL and ChimeraX were used as well as the freely 

available online server Structure Assessment Tool.  

In the future, more attention should be paid to improving algorithms 

and expanding the availability of high-quality experimental data for model 

training. Such extensions would contribute greatly to fields such as 

biotechnology and personalized medicine, where the focus is on customized 

treatment based on an individual's unique protein structure and genetic 

variation. 
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6. Conclusion 

This thesis is based on investigating the ability of AlphaFold 2 to 

accurately and precisely predict the 3D structures of proteins. The research 

began by predicting peptide structures having random amino acid sequences 

generated in three ways. The resulting AlphaFold 2 conformations were 

unconfident and unreliable. Such results are to be expected as AlphaFold 2 is 

an AI software that learns from the available experimental data from various 

databases such as UniProt or PDB, emphasizing the importance of having 

high-quality data. In addition, this also reflects that proteins’ sequences are 

not arbitrary. 

We then predicted the structures of two catalytic enzymes, haloalcohol 

dehalogenases HheA and HheC, which share 35% sequence identity. 

AlphaFold 2 successfully predicted their 3D structures, particularly of their 

monomeric subunits, as evidenced by high global LDDT scores and low RMSD 

and PAE values. The predicted structures for dehalogenases HheA and HheC 

in their monomeric and natural tetrameric forms, including catalytic residue 

positions, are consistent with their PDB conformations. However, a  structural 

peculiarity of intruding of the C-terminal tail to the diagonal subunit of the 

HheC tetramer is not predicted. 

With this work, we aimed to demonstrate the ability of AlphaFold 2 in 

predicting 3D protein structures, but also to point out shortcomings that 

should be resolved in subsequent versions of this valuable software. AlphaFold 

2 helps us to quickly get to the 3D structures of proteins, after which we 

visualize the structures, using available tools like PyMOL or ChimeraX. This 

can be important because they help us understand what to focus further on in 

performing either in silico (e.g., molecular dynamics simulations) and/or wet 

experiments. 
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The future of AlphaFold 2 is likely to be a combination of improving the 

program itself and exploring its various applications in different scientific and 

industrial fields. As research in structural biology and bioinformatics advances, 

AlphaFold 2 is expected to play a significant role in unlocking the secrets of 

protein structure and function, leading to numerous breakthroughs in science 

and technology. 
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