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The toolkit for repairing damaged neurons in amyotrophic 
lateral sclerosis (ALS) and spinal cord injury (SCI) is extreme-
ly limited. Here, we reviewed the in vitro and in vivo studies 
and clinical trials on nonneuronal cells in the neurodegen-
erative processes common to both these conditions. Spe-
cial focus was directed to microglia and astrocytes, because 
their activation and proliferation, also known as neuroin-
flammation, is a key driver of neurodegeneration. Neuroin-
flammation is a multifaceted process that evolves during 
the disease course, and can be either beneficial or toxic 
to neurons. Given the fundamental regulatory functions of 
glia, pathogenic mechanisms in neuroinflammation repre-
sent promising therapeutic targets. We also discussed neu-
roprotective, immunosuppressive, and stem-cell based ap-
proaches applicable to both ALS and SCI.
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The nervous system was traditionally investigated by fo-
cusing primarily on neurons as main functional units (“neu-
rocentric” view) (1). Recently, this standpoint has changed, 
and glial cells are now recognized as active participants 
in virtually all functions of the nervous system. Neurons, 
which could arguably be considered the least self-suffi-
cient cells in the body, need glia for development, func-
tion, maintenance, and plasticity (2-6). However, in central 
nervous system (CNS) insults the key homeostatic func-
tions of glia may be compromised, turning them into ma-
jor drivers of neuronal death. In this review, we focused on 
the role of astrocytes and microglia in two devastating dis-
eases of the nervous system without effective therapies, 
amyotrophic lateral sclerosis (ALS) and spinal cord injury 
(SCI). Due to their distinct etiology, these diseases are rarely 
discussed together. However, they share several key patho-
genic mechanisms, thus allowing us to pinpoint potential 
common targets for therapeutic intervention.

GlIal Cell SuBSetS and funCtIonS

Glial cells of the CNS comprise astrocytes, oligodendro-
cytes, microglia, and ependymal cells. The shortest de-
scription of CNS glia could be “homeostasis-maintaining 
cells” (5,7). Except for microglia, they all originate from ra-
dial glia, neural stem cells (NSC)/neural progenitor cells 
(NPC), present in large numbers only during the embry-
onic development (7,8). Due to limited presence of NSC, 
neurogenesis in adults is restricted to the so-called neu-
rogenic niches (subventricular zone and the subgranular 
layer of the hippocampus) (9,10). Ependymal cells, primar-
ily responsible for production and regulation of cerebro-
spinal fluid (CSF), retain stem cells properties (11). Here, 
we focused on two cell types with key homeostatic roles: 
astrocytes and microglia.

Astrocytes perform multiple neuroprotective functions. 
Due to the impressive number of receptors, channels, 
and transporters, they regulate the exchange of water, 
ions, neurotransmitters, and various metabolites. They 
also have a fundamental structural and functional role in 
maintaining the brain-blood barrier (BBB) and its spinal 
cord equivalent, the blood-spinal cord barrier (BSCB), and 
release the neurotrophic factors such as brain-derived 
neurotrophic factor (BDNF), nerve growth factor (NGF), 
glial-derived neurotrophic factor (GDNF), and vascular 
endothelial growth factor (VEGF) (3,7). Other important 
functions include synaptic formation, maturation, prun-

ing, transmission, and plasticity. Although astrocytes 
were historically attributed a merely passive role 

in the synaptic activity, due to their proximity and bidi-
rectional communication with neurons, a new concept 
of the tripartite synapse has been proposed, consisting 
of glia, presynaptic and postsynaptic neurons (12). Finally, 
in response to damage, astrocytes take part in brain pro-
tection (reactive astrogliosis, scar formation, secretion of 
proinflammatory factors). These immune functions of as-
trocytes intricately depend on microglia as the primary 
damage sensors, demonstrating a tight interaction be-
tween the glial subsets (13).

Microglia are the only resident innate immune cells in the 
CNS parenchyma. In response to tissue damage and/or 
pathogens, they trigger inflammatory responses similarly 
to peripheral macrophages (14), although these responses 
are less robust. This is partly because their precursors enter 
the CNS during the early embryonic development and are 
normally not replaced by infiltrating monocytes (15,16). 
Similar to astrocytes, microglia also contribute to synaptic 
pruning and the secretion of neurotrophic factors includ-
ing BDNF, GDNF, and insulin-like growth factor-1 (IGF-1). 
Their activation state closely mirrors their microenviron-
ment: if the surrounding neurons are not under stress, 
they signal microglia to remain quiescent by expressing 
negative costimulatory molecules CD200 and chemokine 
CX3CL1 (fractalkine) (17). However, various danger sig-
nals derived from damaged or dying cells, including ATP, 
protein aggregates, and/or loss of CD200- and CX3CL1-
signaling, activate microglial inflammatory responses 
(18,19). The activation of microglia, known as microglio-
sis, is accompanied by proliferation and secretion of nu-
merous proinflammatory cytokines (TNF, IL-1β, etc) and 
chemokines, generation of reactive oxygen and nitrogen 
species (ROS and RNS, respectively), and phagocytosis of 
damaged tissues. As mentioned above, microglial activa-
tion also orchestrates the activation of astrocytes (13). If 
the primary damage resulted in the breakdown of the BBB 
or BSCB, microglia temporarily patch up the barrier and 
diminish the infiltration of peripheral cells. In contrast, if 
they cannot contain the damage, they actively recruit im-
mune subsets to the damage site by secretion of various 
chemokines.

There are still many open questions on glial subsets and 
functions, including the mystery of their exact number (the 
estimated number of glial cells has recently decreased 10-
fold to reach 1:1 ratio to neurons) and the heterogeneity of 
individual subsets (exclusive subtype-specific markers are 
still missing) (7,20). However, as evident from the above-
mentioned functions, astrocytes and microglia cooperate 
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during development and adult life to regulate synaptic 
functions and provide trophic support, and most impor-
tantly, to trigger neurorepair following injury (21). Neurore-
pair begins upon elimination of damaged tissues when 
the proinflammatory response of microglia and astrocytes 
subsides, and an anti-inflammatory response starts to pre-
dominate. The latter is marked by the secretion of anti-in-
flammatory cytokines, such as IL-4 and IL-10. However, the 
extensive and/or prolonged damage can preclude effi-
cient repair, resulting in highly damaging chronic neuroin-
flammation, as is the case in ALS and SCI.

tHe Role of GlIa In aMYotRoPHIC lateRal SCleRoSIS

ALS is the most common adult motor neuron disease 
and the fastest progressing neurodegenerative disease 
(22,23). It is marked by an unusual heterogeneity at sever-
al levels: 1) it can be caused by mutations in >30 unrelat-
ed genes; nonetheless, the majority of cases are sporad-
ic with unknown underlying genetic and environmental 
component; 2) the rate of progression, onset site, and ini-
tial ratio of upper/lower motor neuron involvement dif-
fer substantially in both familial and sporadic cases; 3) the 
loss of motor neurons spreads to adjacent regions until 
practically all motor neurons are affected; 4) death occurs 
within 2-5 years upon diagnosis, although in rare cases, 
disease lasts 10 years or more (24,25). The death of the 
motor neurons in the spinal cord, brainstem, and cerebral 
cortex, is a rare common denominator within the com-
plexity of ALS (23). However, it is still unclear how muta-
tions in different genes, most common of which encode 
for chromosome 9 open reading frame 72 (C9ORF72), su-
peroxide dismutase 1 (SOD1), TAR DNA-binding protein 
43 (TDP-43), Fused in Sarcoma (FUS) and TANK-binding ki-
nase 1 (TBK1), cause neuronal death (25,26). The affected 
neurons in >95% of ALS cases, regardless of genetic back-
ground, contain TDP-43 aggregates, which spread to the 
neighboring neurons (27). SOD1 and other aggregation-
prone proteins act similarly in specific mutation carriers, 
but we do not know the exact reason why the aggregates 
are toxic to neurons and if they are the earliest detected 
pathology. However, they stimulate the activation of mi-
croglia and astrocytes, thus making glia essential for the 
neurodegenerative process (28-30).

The decisive role of glia in ALS has been mapped in el-
egant conditional genetic models, which were based on 
the transgenic mouse model containing an aggregate-
prone patient SOD1 mutation (mSOD1) and exhibiting 
early onset hind limb paralysis and premature death (31). 

Remarkably, if the mutated SOD1 transgene expression 
is restricted to neurons, ALS does not develop, suggest-
ing that neurons do not die if the surrounding glia are 
healthy (32,33). When the mSOD1 transgene was condi-
tionally deleted in individual glial subsets (microglia, as-
trocytes or oligodendrocytes), the ALS progression was 
substantially slowed down (34-36). In contrast, when the 
innate immunity was chronically stimulated by systemic 
lipopolysaccharide (LPS), ALS symptoms in mice exacer-
bated (37). mSOD1 carrying microglia and astrocytes from 
animal models and familial and sporadic ALS patients are 
able to kill motor neurons (but not interneurons) both in 
vivo and in vitro (38-40). Finally, given the variability in ALS 
onset time and site, limited penetrance of many ALS mu-
tations, and the substantial differences in disease progres-
sion that are present even in familial ALS cases, it is not too 
ambitious to hypothesize that glial cells are the key deter-
minants of disease onset and/or progression. If this is the 
case, neuronal damage could be prevented or delayed by 
improving the homeostatic functions of glia and/or sup-
pressing the neurotoxic inflammation.

tHe Role of GlIa In SPInal CoRd InJuRY

SCI, of traumatic or non-traumatic origin, is a devastating 
condition with high incidence, causing mortality or se-
vere neurological deficits and permanent disability (41,42). 
Even though considerable progress has been made in un-
derstanding molecular pathways and cellular changes in-
volved in the pathophysiology of SCI, no current therapies 
are able to restore neuronal connections and re-establish 
neuronal circuits responsible for complex functions such 
as standing or walking. Since hallmarks of SCI are neuronal 
death and deficits, the research has been mostly focused 
on axonal regeneration, neuronal plasticity, and neuropro-
tective drugs able to prevent neuronal death in second-
ary injury responses. The pathophysiology of SCI involves 
active participation of numerous glial cells (astrocytes, mi-
croglia, oligodendrocytes, pericytes, etc), which can both 
facilitate repair or potentiate damage. Potential therapies 
could thus target glial cells, their mutual interactions or in-
teractions with neurons (43,44).

CoMMon PatHoPHYSIoloGIC MeCHanISMS In 
aMYotRoPHIC lateRal SCleRoSIS and SPInal CoRd 
InJuRY

Microglia in ALS act as a double-edged sword by exert-
ing 1) neuroprotective effect in the early stages by lim-
iting the damage via phagocytosis of dead neurons 
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and protein aggregates, and secreting anti-inflammatory 
and neurotrophic factors, and 2) neurotoxic effect in the 
later phases by activating astrocytes. The astrocyte activa-
tion leads to a positive-feedback loop, in which homeo-
static functions of both cell types fail and hyperinflamma-
tion, dominated by TNF, IL-1β, IL-6 cytokines and oxidative 
damage, spins out of control and causes collateral neuronal 
damage (13,45). Of note, in a proinflammatory environ-
ment, excitotoxic neuron death is increased because TNF 
enhances glutamatergic transmission (46). To the affected 
CNS areas, microglia also attract T cells (47,48), whose ef-
fect can also be either beneficial or toxic. The early phas-
es are characterized by the predominance of the regula-
tory T cells (Tregs), which support the anti-inflammatory 
microglia, whereas the later stages (or the fast progress-
ing disease course) are characterized by their diminish-
ing number and the predominance of effector T cells (49). 
Therefore, the proinflammatory and anti-inflammatory mi-
lieu at the affected sites determines the speed of disease 
progression and presents a tempting therapeutic target.

SCI pathophysiology, similar to that of ALS, is complex 
and includes multifold events that extend over time and 
space. In traumatic SCI, the initial traumatic insult that me-
chanically damages spinal cells and blood vessels at the 
injury site is succeeded by a secondary injury cascade. 
This cascade consists of inflammation, edema, hemor-
rhage, ischemia, and excitotoxicity, which induce ionic 
disbalance and the death of neuronal and glial cells (by 
necrotic, apoptotic, and other programmed death path-
ways), causing demyelination, further inflammatory cell 
infiltration, astrogliosis, and the reorganization of vascu-
lature, extracellular matrix, and neuronal circuits (41,42). 
The subsequent formation of a cyst, surrounded by a fi-
brous scar (containing astrocytes, pericytes, and ependy-
mal cells), impedes axonal regrowth and regeneration. 
These secondary events effuse the damage of spinal tis-
sue significantly outside the epicenter of injury and rep-
resent a source of multiple attractive therapeutic targets. 
On the other hand, the fibrotic scar has a beneficial, tis-
sue-preserving role, confining inflammation to the lesion 
epicenter and restricting tissue damage and neural loss 
after SCI, mostly by neural stem cell-derived scar compo-
nent (44,50). Similar to astrogliosis in ALS, neuroprotective 
scar formation is contingent on microglial activation (51). 
Microglial activation also limits the damage by mitigating 
the recruitment of peripheral macrophages and leuko-
cytes. However, if the damage is too extensive, microglia 

contribute to the pathology. Therefore, the activated 
microglia have both beneficial and detrimental ef-

fects on the spinal tissue after injury, influencing multiple 
factors that perform a variety of roles, from promotion of 
neuronal damage to neuroprotection and promotion of 
axonal growth (44).

The physical disruption of capillaries and BSCB breakdown 
in SCI present an acute threat and cause rapid infiltration 
of blood-borne factors and peripheral blood cells, such as 
monocytes and neutrophils (52). The initial acute insult and 
cell infiltration are replaced with increased permeability 
linked to revascularization of the scar tissue (53,54). In con-
trast to SCI, animal ALS models have clearly demonstrat-
ed minor infiltration of peripheral blood cells and increase 
in the microglial number strictly due to local proliferation 
(15). However, various subtle chronic defects in BSCB have 
been reported in both animal models and patient tissues, 
including increased endothelial permeability, decrease in 
tight junction proteins, microhemorrhages, and antibody 
deposition (55-57). Of note, reactive astrocytes and micro-
glia in both in ALS and SCI release proinflammatory factors, 
ROS, glutamate, matrix metalloproteinases (MMPs), and 
VEGF, which down-regulates the expression of tight junc-
tion proteins. Therefore, BSCB is compromised in both SCI 
and ALS, but with different kinetics and magnitude, and 
should thus be targeted by therapies customized to the 
disease stage.

CoMMon tHeRaPeutIC aPPRoaCHeS In 
aMYotRoPHIC lateRal SCleRoSIS and SPInal CoRd 
InJuRY

neuroprotective agents

Since in both SCI and ALS, CNS responds to injury by em-
ploying similar pathological pathways and cell-death 
mechanisms, the therapeutic targets in both diseases 
might be similar. Riluzole, the only widely used drug for 
ALS, prolongs the life of ALS patients for 2-3 months (58). 
Despite its complex and incompletely defined mechanism 
of action, it exerts several effects beneficial for ALS and SCI: 
1) decrease of presynaptic glutamate release, 2) reduction 
of the persistent Na+ current, 3) facilitation of glutamate 
uptake, and 4) inhibition of neuronal excitability (59-62). It 
has recently been tested in numerous animal models of 
spinal cord ischemic and traumatic injury, where it exert-
ed neuroprotective effects on spinal gray matter and neu-
romodulation (63-65). In two clinical trials it improved the 
motor scores and provided other benefits for SCI patients, 
while its efficacy is currently under extensive clinical inves-
tigation (41,66).
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A number of neurodegenerative disease models, includ-
ing those of ALS, have shown neuroprotective function of 
arimoclomol, leading to clinical testing of its therapeutic 
potential (67,68). Arimoclomol is a coinducer of heat shock 
proteins (HSP), molecular chaperones involved in heat 
shock response, a major defense mechanism against stress 
or injury (69). Similarly, natural compound celastrol, which 
induces HSP, has been tested as a neuroprotectant in dif-
ferent animal and in vitro models of neurodegeneration, 
including ALS and SCI, with a beneficial outcome (69,70). 
Other mechanisms of action of celastrol could be relevant 
for both ALS and SCI, including its anti-inflammatory role 
(71). Furthermore, since neuronal tolerance to stress is not 
entirely dependent on their own HSP, it should be elucidat-
ed if the effect of both arimoclomol and celastrol on adja-
cent glial cells can supplement neuronal HSP after SCI.

A free radical scavenger edaravone has recently been 
approved for ALS in Japan and USA (2015 and 2017, re-
spectively) as a riluzole add-on therapy because it slightly 
slowed down disease progression in patients in the early 
disease stages (72,73). Edaravone has previously been ap-
proved for acute-phase cerebral infarction, but its efficacy 
in SCI has not been tested (74).

Although various neurotrophic factors (GDNF, BDNF, IGF-1, 
etc) promote neuronal survival and regeneration, they 
have not lead to clinical improvement in SCI and ALS 
(41,72), presumably because single factors were insuffi-
cient to exert therapeutic effects and/or because of the 
complexity of trophic factor signaling. Overall, since direct 
neuroprotective agents provide only limited or no effects, 
and since glia exhibit superior plasticity to neurons, a large 
number of experimental therapies that directly target glia 
are currently studied.

Immunosuppressive and anti-inflammatory approaches

Given that chronic neuroinflammation is toxic to neurons, 
a large number of preclinical and clinical trials attempted 
immunosuppressive and/or anti-inflammatory approach-
es (72). Contrary to predictions, general anti-inflammatory 
drugs proved to be rather inefficient in ALS. For example, 
late-stage clinical trials showed the ineffectiveness of an-
ti-inflammatory COX-2 inhibitors and minocycline, where-
as small-scale ALS studies showed the ineffectiveness of 
immunosuppressive glucocorticoid methylprednisolone 
(72,75). CNS-targeted glucocorticoid reduced astroglio-
sis and neuronal loss in cranial motor nuclei but failed to 
preserve lower motor neurons or improve motoric and be-

havioral symptoms in mSOD1 mice (76). However, methyl-
prednisolone has for a long time been widely accepted as 
a standard of care in SCI without being officially approved 
by Food and Drug Administration (41). In experimental ani-
mal models it beneficially affected the white matter oligo-
dendrocytes and astrocytes, but with questionable func-
tional recovery (77-80). Methylprednisolone is less used 
today because of its moderate efficacy and recognized 
side effects (66).

The nuclear factor kappa-light-chain-enhancer of activat-
ed B cells (NF-κB) is the master transcriptional factor for 
microglial and astrocyte inflammatory responses. It is ac-
tivated in various CNS pathologies, including ALS and SCI, 
and its therapeutic potential has been demonstrated by 
various preclinical studies (81-83). For example, NF-κB inac-
tivation in astroglia reduced the production of chondroitin 
sulfate proteoglycans and proinflammatory cytokines and 
chemokines, thus promoting oligodendrogenesis, white 
matter preservation, and functional recovery after traumat-
ic SCI (84,85). Drugs that target NF-κB in vivo are still under 
research, however mouse ALS model expressing human 
TDP-43 mutation showed that the extract of herbal medi-
cine Withania somnifera (Ashwagandha) with anti-inflam-
matory properties reduced NF-κB activity, neuroinflamma-
tion, TDP-43 aggregation, and improved neuromuscular 
innervation (86). Another inflammatory signaling pathway 
leading to production of the immunomodulatory cytokine 
IFN-β, dependent on TBK1 and optineurin, has recently 
been found to be disrupted in ALS patients and mouse 
models (87,88). As IFN-β can suppress proinflammatory cy-
tokine production and exert neuroprotective effect in mul-
tiple sclerosis (89), it remains to be investigated whether it 
can also have a protective effect in ALS and SCI.

Genetic deletions of major proinflammatory cytokines, 
such as IL-1β and TNF, did not reduce disease progression 
in mSOD1 ALS mice models (90,91). This suggests the in-
efficiency of targeting single proinflammatory factors. 
In contrast, anti-inflammatory IL-10 cytokine blockade in 
mSOD1 ALS models activated microglia and precipitated 
the disease. On the contrary, IL-10 delivery via viral vectors 
substantially slowed down ALS progression (92). IL-10 re-
duced several secondary effects in animal models of SCI by 
facilitating functional recovery (93,94). The positive effects 
of IL-10 can be potentiated by using Schwann cell and ol-
factory cell grafts, and drugs such as methylprednisolone, 
minocycline, hyperbaric oxygen, etc. Overall, IL-10 shows 
an excellent promise for treating SCI, however its po-
tential secondary immunosuppressive effects dur-
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ing chronic application (pneumonia, peripheral neuropa-
thy, etc) need to be addressed (95).

Rat mSOD1 models have recently demonstrated that 
ALS progression was reduced by tyrosine kinase inhibitor 
masitinib (96,97). It was shown to inhibit signaling path-
ways in several innate immune cells including microglia, 
mast cells, and neutrophils, however clinical trials are still 
undergoing (72). Since masitinib targets several key in-
flammatory cells and pathways, it could be an interesting 
treatment target in SCI.

Cell-based approaches

Cell transplantation is an attractive approach in both ALS 
and SCI, but despite almost 20 years of research it is still 
not a reliable clinical option (98,99). Two major goals of cell 
transplantation are 1) to provide neuroprotection by limit-
ing tissue damage, which is more feasible, and 2) to sup-
port neuroregeneration by cell replacement, remyelina-
tion, and repair of endogenous circuits in the spinal cord, 
which remains challenging. Progenitor cell types most 
commonly used in experimental ALS therapies include 
NSCs obtained from fetal CNS or differentiated from adult 
tissues (for example, iPSC-derived glial-rich progenitors 
[GRPs]), mesenchymal stem cells (MSCs), and hematopoi-
etic stem cells (HSCs) (98,100-102). HSCs showed prom-
ising results in preclinical studies, and transplantation of 
healthy bone marrow into mSOD1 transgenic mice dimin-
ished motor neuron loss and prolonged survival. Howev-
er, in clinical trials HSC transplantation upon total body ir-
radiation was unsuccessful (103,104). GRP, NSC, and MSC 
approaches have been more successful, with the best cell 
yields and survival reported upon multifocal intralesion-
al transplantation. Transplanted GRPs were shown in an 
mSOD1 ALS mouse model to generate astrocytes, reduce 
microgliosis, decrease motor neuron loss, and mitigate dis-
ease progression (105). Since glutamate transporter GLT-
1-deficient GRPs were ineffective, these effects could at 
least in part be ascribed to decreased excitotoxicity. Undif-
ferentiated multipotent NSC have also been proven to be 
safe and considerably effective upon intralesional applica-
tion in mSOD1 ALS models: they preserved motor neurons 
and neuromuscular junctions, diminished microgliosis and 
astrogliosis, and increased the secretion of neurotrophic 
factors (106). They were effective although mere ~ 1% of 
transplanted cells differentiated into neurons and ~ 10% 
to astrocytes or oligodendrocytes, suggesting that the 

protective effect was largely mediated by undifferenti-
ated NSCs. Interestingly, these mechanisms of action 

make NSCs similar to MSCs. Indeed, the main neuropro-
tective effects of MSCs are supporting anti-inflammatory 
and immunomodulatory cytokine and trophic factor pro-
duction and diminishing excitotoxicity (101,107). A major 
advantage of MSCs is their non-immunogenicity, which 
obviates the need for immunosuppression. Successful ap-
plication of MSCs and NSCs in animal ALS models paved 
the way for the first clinical trials (108-110). Their safety 
was further confirmed in larger follow-up studies, which 
showed some preliminary evidence of efficacy (111-113). 
Although considerable progress has been made in stem 
cell-based therapies in ALS, the exact mechanisms of ac-
tion, cell take/rejection, preparation, appropriate dose, and 
route of administration need to be better addressed before 
the efficacy is tested in large-scale studies.

Numerous cell types have also been considered for trans-
plantation in SCI, including MSCs, NSCs, NPCs, oligoden-
drocyte progenitor cells (OPCs), iPSCs, as well as non-stem 
cells such as Schwann cells and olfactory ensheathing glial 
cells (OEG) (41,114). Commonly proposed mechanisms of 
action of transplanted cells in SCI include immunomodu-
latory and anti-inflammatory cytokine production, neuro-
protection, axon sprouting/regeneration, myelin regener-
ation, and neuronal relay formation (115). Schwann cells 
transplanted to a rodent SCI model stimulated axonal 
regeneration, thus improving locomotor coordination 
(115,116). A similar procedure has been proven to be safe 
in a clinical trial with a 2-year follow-up in chronic SCI pa-
tients, providing preliminary evidence of partial recovery 
of sensorimotor activity (117). The OEG-based transplanta-
tion after experimental SCI had substantial overall efficacy 
(118), but few chronic SCI patients in clinical trials phase I/
IIa functionally recovered (119). Because of the neuropro-
tective effects of MSCs and NSCs, their clinical utility has 
been extensively tested in chronic SCI (41). NSCs grafts at-
tenuate reactive gliosis, and a fraction of them that differ-
entiates in astrocytes participates in BSCB formation and 
extensively migrates out of the grafts, which is why they 
have been proposed as candidates for treating rodent SCI 
(120). In conclusion, similar to ALS, cell-based approaches 
in SCI have provided encouraging preclinical and clinical 
results, but we need to understand them better if we want 
to personalize and enhance their therapeutic efficacy.

tHe Role of tHe Blood-BRaIn and Blood-SPInal 
CoRd BaRRIeR In tHeRaPIeS

Crossing the BBB/BSCB is the biggest challenge for almost 
every CNS therapy. The efficiency of drug delivery could be 
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increased by physical or chemical opening of the BBB by 
nanotechnological approaches that use nanocarriers and/
or non-invasive intranasal drug delivery (121,122).

ConCluSIon

Whereas ALS and SCI differ in their primary cause, what 
they have common are distal pathogenic mechanisms, 
most of which affect neuroinflammatory pathways of mi-
croglia and astrocytes (Figure 1). This opens the possibil-
ity of using common targets for therapeutic intervention. 
Here, we propose that the drugs shown to be effective in 
ALS, such as arimoclomol, masitinib, immunomodulatory 
cytokines, cell therapies, and others, should be evaluated 
as therapeutic candidates for SCI (and vice versa). Target-
ed therapies that would support protective glial functions 
while blocking their toxic function are still an elusive goal, 
but will likely offer wider possibilities than neuron-target-
ing therapies.
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