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Abstract

Accumulating evidence suggests an important role for the Disrupted-in-Schizophrenia 1

(DISC1) protein in neurodevelopment and chronic mental illness. In particular, the C-termi-

nal 300 amino acids of DISC1 have been found to mediate important protein-protein interac-

tions and to harbor functionally important phosphorylation sites and disease-associated

polymorphisms. However, long disordered regions and oligomer-forming subdomains have

so far impeded structural analysis. VHH domains derived from camelid heavy chain only

antibodies are minimal antigen binding modules with appreciable solubility and stability,

which makes them well suited for the stabilizing proteins prior to structural investigation.

Here, we report on the generation of a VHH domain derived from an immunized Lama

glama, displaying high affinity for the human DISC1 C region (aa 691–836), and its charac-

terization by surface plasmon resonance, size exclusion chromatography and immuno-

logical techniques. The VHH-DISC1 (C region) complex was also used for structural

investigation by small angle X-ray scattering analysis. In combination with molecular model-

ing, these data support predictions regarding the three-dimensional fold of this DISC1 seg-

ment as well as its steric arrangement in complex with our VHH antibody.

Introduction

Disrupted- in-schizophrenia 1 (DISC1) was discovered as the gene disrupted by a balanced

chromosomal translocation (1; 11) (q42.1; q14.3), which is strongly linked with
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schizophrenia and several other mental disorders in a large Scottish family [1]. In an Ameri-

can family with mental illness, a frame shift mutation following amino acid 807 in the DISC1

protein was reported [2]. DISC1 is known to interact with more than 150 other proteins [3],

but has no known enzymatic activity and is considered to act as a scaffolding protein, regu-

lating the functions of its binding partners [4]. DISC1 is involved in cerebral cortex develop-

ment and affects critical processes including neuronal migration and proliferation [5, 6].

Studies on animal models have associated pathological DISC1 protein variants with behav-

ioral abnormalities [7], which were linked to disturbances in various neurotransmitter sys-

tems including dopamine [8, 9].

The C-terminal region comprising amino acids 598–854 of the human DISC1 protein (Uni-

ProtKB Q9NRI5) contains interaction sites for several binding partners, such as nuclear distri-

bution element 1 (NDE1), NDE-like 1 (NDEL1), and lissencephaly 1 (LIS1, encoded by the

PAFAH1B1 gene), which are important for brain development and neuronal migration [10,

11]. It also harbors functionally important sites such as the mental illness associated S704C

polymorphism [12–14] and a phosphorylation site at S713, which was found to coordinate the

switch of neuronal progenitor cell proliferation to migration during corticogenesis [15]. More-

over, a DISC1 protein fragment consisting of amino acids 598–785 was shown to possess

unique characteristics such as cell invasiveness [16, 17] and to contribute prominently to the

structural order of the DISC1 protein, while amino acids 668–747 are essential for an orderly

assembly of oligomers [18]. Recent findings regarding the structural organization of the

DISC1 protein showed that the C-terminal portion of the DISC1 protein covers three out of

the four known structural regions of the protein: the I region (aa 539–655), the S region (aa

635–738) and the C region (aa 691–836) [19]. The I region was shown to be the most aggrega-

tion-prone of these regions, whereas the S region is very stable and highly oligomeric. The C

region, which was previously thought to be dimeric, was proved to exist as a monomer but to

lose its high solubility due to the disease related frameshift mutation at amino acid 807 with

nine novel amino acids. Therefore, structural information on the C-terminal portion of the

DISC1 protein is desirable for understanding the role of this region in the protein’s normal

function, solubility, and interaction properties, as well as the effects of truncations found in

disease variants.

Single-domain camelid antibodies, also called VHH domains or nanobodies, are engineered

polypeptides used in a large range of applications [20]. They consist entirely of the variable

domain (VH) of heavy chain-only immunoglobulins, which occur in the sera of animals

belonging to the Camelidae family. This variable domain alone is completely functional in rec-

ognizing a specific antigen, without the presence of a paired light chain variable (VL) domain

[21–23].

The numerous benefits of VHH fragments compared to conventional antibodies include

higher yields of expression when produced as recombinant proteins in bacterial cells, higher

levels of stability and solubility, and greater ease of delivery for therapeutic applications, while

retaining high affinity and specificity towards the target antigen [24]. VHH antibodies have

proven applicable in diverse fields, from therapeutic interventions and diagnostics to basic

research, including the investigation of protein structure and function [25–28].

Here we report the generation of the first VHH antibody directed against human DISC1,

termed B5. Using biochemical and biophysical methodology, we quantitatively characterize

the interaction of the antibody with DISC1 and determine its epitope. Moreover, the structures

of the DISC1 C region [19] and its complex with VHH B5 are investigated by small angle X-ray

scattering (SAXS) analysis and molecular modeling. These results provide insight into the

binding mode of our VHH antibody to the DISC1 protein.

DISC1 camelid antibody complex
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Experimental procedures

Llama immunization

A female llama was immunized on days 0, 17, 32, and 65 with 240 μg of purified recombinant

human DISC1 fragment comprising residues 598–785 (DISC1 598–785) [18] in 0.5 mL PBS,

mixed with an equal volume of complete (day 0) or incomplete (all other days) Freund’s adju-

vant. At day 70, 550 mL of blood was taken and used to generate a phage library. The immuni-

zation procedure and blood withdrawal from the llama was contracted to the company

Preclinics GmbH (Potsdam, Germany). All animal research was authorized by the Niedersäch-

sische Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES), Oldenburg,

Germany (Az 33.9-42502-05-09A618) and conducted according to the European Directive for

Animal Research.

Construction of the phage library

500 mL of blood was collected 7 days after the final injection and diluted 1:1 with PBS. In total

6.9 × 108 lymphocytes were isolated via Ficoll Paque gradient centrifugation, pelleted and snap

frozen in liquid nitrogen before storage at -80˚C.

RNA was extracted using the RNeasy Mini Kit (Qiagen, Germany) and first strand cDNA

was generated with Oligo(dT)18 primers and the Revert Aid M-MuLV Reverse Transkriptase

Kit (Thermo Scientific). cDNA encoding VHH was specifically amplified by PCR using the

sense and anti-sense hinge-specific primers “MJ 1.2.3 Back” and “CH2 + CH2b3”, as described

in ref. 29. PCR bands between 620 and 670 bp were eluted from the gel and reamplified by

nested PCR using the primers MJ7 [29] and JH [30]. These primers included respective SfiI
and NotI cleavage sites for subsequent cloning into the phagemid vector pIT2 (obtained from

the human single fold scFv Tomlinson I+J libraries, Cambridge, UK) [31]. Ligated DNA was

electro-transfected into electro-competent E. coli TG1 cells. The colonies of plated cells were

counted, collected and frozen in growth medium containing 15% glycerol at -80˚C. The size of

the library was determined to be 1.2 × 107 CFU (colony-forming units).

Phage display for selection

The phage display process was performed based on the Tomlinson I + J protocol [32]. The

phage library generated was used for three rounds of panning in order to screen for the stron-

gest DISC1-binding clone. The panning procedure was performed by coating the Nunc Maxi-

sorp ELISA plates (Thermo Scientific, Denmark) with 0.1 mg/mL of the DISC1 protein

fragment aa 598–785 in PBS buffer by overnight incubation at 4˚C. The plates were blocked

with 1% skimmed milk powder and 1% Casein (Hammerstein grade) in PBS buffer, for alter-

nate rounds of panning, after coating with the DISC1 protein by similar incubation conditions

as for coating. The phage library was panned onto these coated and blocked ELISA plates in

the respective blocking solution, which were washed 8–10 times with PBS before eluting the

final binding phages. Elution was performed using 10 mg/mL trypsin solution dissolved in

PBS. The trypsin-eluted phage species from each round of panning were propagated in TG1 E.

coli. The efficacy of each panning round was titrated by colony count at different dilutions of

the propagated TG1 E. coli species infected by the trypsin eluted phages. Typically, the titer of

the TG1 E. coli cells infected with trypsin eluted phages increased in each consecutive round,

corresponding to a successful selection process. Thereafter the VHH sequence of the clone

selected through three rounds of panning from the phage library was cloned into the plasmid

vector pET-22b (by Nco1 and Not1) for ease of overexpression.

DISC1 camelid antibody complex
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Cloning and production of anti-DISC1 human Fc-VHH antibody

The anti-DISC1 VHH antibody sequence was PCR amplified from the pET-22b vector using

forward primer 5’-agacggctgtgtcttcaggt-3’ and reverse primer 5’-acctgaaga
cacagccgtct-3’.Age1 and Not1 sites were added to the PCR product using the forward

5’-gaaaaccggtatggcccaggtaaag-3’ and reverse 5’-cttggcggccgcctactat
gcggccgctg-3’primers. The sequence was then ligated into the expression vector

pLHCX-FC-fs, downstream of the IgG signal sequence and followed by the human Fc coding

sequence.

The expression vector pLHCX-FC-fs was generated from a modified pLHCX vector (Clon-

tech), where the multiple cloning site was modified using HindIII and ClaI, and a synthetic

sequence (5’-accggtctcgaggcggccgcggccaaaaaggccggatccgttaacaccaaa
aaatggcacgtggccggcacg cgtgggcccgtcgac-3’) was inserted.

To obtain the coding sequence of the human FC, mammalian cells were transiently trans-

fected with the pLHCX-PrP-Fc vector, containing the genomic human FC sequence [33]. RNA

and derived cDNA were used to clone the coding sequence of the human FC into the modified

pLHCX vector in-frame at the SalI restriction site. The IgG signal sequence in expression vec-

tor pLHCX-FC-fs was cloned at the HindIII and BamHI restriction sites.

The pLHCX-FC-fs vector encoding the antibody was used to generate retroviruses accord-

ing to the manufacturer’s protocol (Clontech), which were used to infect HEK293 cells, leading

to stable expression of the VHH antibody. HEK293 cells were then cultured in DMEM contain-

ing 5% fetal calf serum, penicillin, streptomycin and hygromycin. Antibody secreted into the

conditioned media (cell supernatant) was collected and used in subsequent steps.

Purification of DISC1 protein fragments

A human DISC1 fragment comprising residues 598–785 (DISC1598-785) was expressed and

purified as described previously [16]. The plasmid vectors pESPRIT002 DISC1 691–836,

pESPRIT002 DISC1 539–655, pESPRIT002 DISC1 480–721, pESPRIT002 DISC1 598–715

[19] were used to transform BL21 AI cells. These were then grown in Terrific Broth (12 g tryp-

tone, 24 g yeast extract, 4 ml glycerol autoclaved in 900 mL H2O, followed by addition of 100

mL filter sterilized 0.17 M monopotassium phosphate and 0.72 M dipotassium phosphate solu-

tion). Protein expression was induced at OD600 = 0.8 by the addition of 0.2% L-arabinose and

1 mM IPTG for 16 hours at 25˚C. Bacterial pellets were stored at -80˚C and lysed by incuba-

tion in 25 mM Tris pH 7.4/150 mM NaCl/5 mM imidazole/1 mM DTT/0.5% Triton X-100/20

mM MgCl2 containing 0.25 mg/mL Lysozyme, DNaseI 40 U/mL and 2 mM PMSF at room

temperature. The insoluble fraction was spun down by centrifugation at 6000 × g for 45 min.

The soluble fraction was then incubated with Ni2+-NTA-Agarose (Qiagen) for 45 min at room

temperature and washed with 25 mM Tris pH 7.4/150 mM NaCl/5 mM imidazole/1 mM

DTT. Protein was eluted with the same buffer containing 500 mM imidazole and was then fur-

ther purified by size exclusion chromatography (SEC) on a HiLoad 16/60 Superdex 200 pg col-

umn (GE Healthcare Bio-Sciences AB, Sweden) with a flow rate of 1 mL/min at 4˚C.

Purification of VHH B5 antibody

The pET22b VHH-B5 plasmid vector was transformed into the BL21 Rosetta strain (Novagen,

USA) and protein expression was induced at OD600 = 0.8 with 1 mM IPTG at 18˚C for 16

hours. Bacterial pellets were stored at -80˚C and lysed by incubation in 25 mM Tris pH 7.4/

150 mM NaCl/5 mM imidazole/0.5% Trition-C100/20 mM MgCl2 containing 0.25 mg/mL

Lysozyme, DNaseI 40 U/mL and 2 mM PMSF at room temperature. The insoluble fraction

was spun down by centrifugation at 6000 × g for 45 min. The soluble fraction was then

DISC1 camelid antibody complex
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incubated with Ni2+-NTA-Agarose (QIAGEN) for 45 min at room temperature and washed

with 25 mM Tris pH 7.4/150 mM NaCl/5 mM imidazole. Protein was eluted with the same

buffer containing 500 mM imidazole and was then further purified by size exclusion chroma-

tography (SEC) on a HiLoad 16/60 Superdex 200 pg column (GE Healthcare Bio-Sciences AB,

Sweden) with a flow rate of 1 mL/min at 4˚C.

Monoclonal antibodies and cell lines

The anti-human DISC1 human monoclonal antibody 14F2 has been described previously

[17]. The mouse-Disc1 C-term monoclonal antibody was produced in rabbit as described pre-

viously [8, 34]. The 6x-His Epitope Tag antibody was purchased from Thermo Scientific.

The NLF human neuroblastoma cell line (Children’s Hospital of Philadelphia) was trans-

fected with human and mouse DISC1. The transfections were performed with 8 μg of plasmid

using Metafectene (Biontex; Martinsried, Germany) according to manufacturer’s protocols.

Surface plasmon resonance (SPR)

SPR measurements were performed using a Biacore T200 instrument (GE Healthcare, Swe-

den) at 25˚C with PBS/0.05% Tween-20, pH 7.4 as running buffer. For preparation of the flow

cells, a CM5 sensor chip (GE Healthcare, Sweden) was activated with 1-ethyl-3-(3-dimethyla-

minopropyl) carbodiimide (EDC) / N-hydroxysuccinimide (NHS) (0.2 M / 0.05 M), the

DISC1 fragment comprising residues 691–836 (DISC1691-836) (30 μg/mL) diluted in 10 mM

sodium acetate, pH 4.0. It was immobilized to a final level of 250 RU, and the flow cell was

deactivated with 1 M ethanolamine-HCl. A reference flow cell was activated and deactivated

only. Afterwards, VHH B5 at concentrations ranging from 19 nM to 1.5 μM was injected in a

single cycle without regeneration. The sensorgrams were double referenced using the reference

flow cell and a buffer cycle, while evaluation was performed by plotting the respective response

levels against the applied VHH B5 concentrations. The curves were fitted using Langmuir’s 1:1

binding model (Hill function with n = 1, OriginPro 8.5G, OriginLab, Northampton, USA).

Small angle X-ray scattering data acquisition and processing

SAXS data were recorded using protein samples of>95% purity, as judged by SDS-PAGE with

Coomassie staining. In addition to the DISC1691-836 protein and the VHH B5 antibody, we

investigated their complex after co-purification via SEC. SAXS was measured on beam line P12

at the PETRA III storage ring (DESY, Hamburg, Germany [35]) and on BM29 at the ESRF

(Grenoble, France [36]). The X-ray wavelengths used on P12 and BM29 were 1.24 Å and 1 Å,

respectively. An automatic robot was used for sample storage and loading of the solutions in the

quartz capillary for X-ray exposure. Storage and measurement temperature was 20˚ C through-

out all experiments. On P12 the exposure time was 100 ms and 20 frames were recorded, while

on BM29 the exposure time was 1 s and 10 frames were taken. Buffer only was measured before

and after each protein sample. The individual frames were checked for the absence of radiation

damage and the corresponding frames were merged. The scattering contribution of the buffer

was subtracted from the measured intensities of the protein solutions. The buffer-subtracted

SAXS data were scaled by the protein concentrations, as determined via absorbance at 280 nm.

Final datasets were derived from measurements at protein concentrations of 2.8 mg/mL and 2.3

mg/mL for the DISC1691-836 protein fragment and the complex with VHH B5, respectively,

whereas in case of the VHH domain B5 recordings for 2.8 and 5.6 mg/mL were merged.

Data were analyzed using the ATSAS software package [37]. The radius of gyration (Rg) was

derived from the Guinier approximation, as implemented in AUTORG [38], while CRYSOL

[39] was used for calculation of theoretical values from atomic coordinates. The distance

DISC1 camelid antibody complex
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distribution function p(r)was determined using the program DATGNOM [38]. For each data-

set, 20 ab initio reconstructions were generated using DAMMIF [40] or GASBOR [41], fol-

lowed by averaging and filtering in DAMAVER [42]. The resulting consensus models were

used in further analyses. For the purposes of fitting and visualization, they were converted into

volumetric maps with pdb2vol, which is part of the Situs package [43].

Preparation of structural models

A starting model of the DISC1691-836 protein fragment, including an N-terminal His tag, was

generated by ab initio prediction using QUARK [44]. This model provided a reasonable fit to

the SAXS reconstruction, with a normalized spatial discrepancy (NSD) value of 1.83 as deter-

mined by SUPCOMB [45]. While it yielded a very good 3D-1D profile, with 92% of all residues

scoring higher than the confidence threshold of 0.2 as given by Verify3D [46], validation with

QMEAN [47] indicated problems with torsion angles, corresponding to an overall QMEAN
score of 0.54 and a Z-score of -2.29. Since visual examination of the model revealed poor

geometry in several loop regions, it was subjected to iterative rebuilding using MODELLER
[48], making extensive use of loop refinement algorithms. This procedure resulted in further

improvement of the 3D-1D profile (94% of residues exceeding 0.2) as well as an increase of the

QMEAN score to 0.67 (Z-score -0.98). The final model comprises all 170 residues of the pro-

tein (including residues 691–836 of the human DISC1 sequence). According to validation in

Coot [49], all residues are located in the allowed regions of the Ramachandran diagram and do

not display rotamer outliers. Compared to the initial QUARK model, the refined version fea-

tures a better fit to the SAXS envelope, with an NSD of 1.36.

A homology model for the VHH B5 antibody was built in MODELLER, using as a template

the crystal structure of a llama nanobody (PDB ID 3EZJ, chain B [50]). This model contains

residues 1–120, again without Ramachandran or rotamer outliers, and performs well in consis-

tency tests using Verify3d (100% scoring > 0.2) and QMEAN (score 0.77, Z-score 0.30).

The models of the DISC1691-836 protein and the VHH B5 antibody were subjected to in silico
docking simulations using CLUSPRO [51] in antibody mode [52]. The resulting models were

examined for consistency with the SAXS reconstruction of the complex as well as experimental

data narrowing down the binding site, and the best candidate selected for further analysis.

Fitting to SAXS envelopes

The ab initio SAXS reconstructions obtained from DAMAVER were initially fit to the corre-

sponding structural models using SUPCOMB, which takes care of the handedness ambiguity

of the SAXS envelopes. After conversion of the latter to Situs-format volumetric maps, the rela-

tive positioning of the model structures was optimized by correlation-based refinement, as

implemented in Sculptor [53].

Data visualization

SAXS data were plotted using Grace (http://plasma-gate.weizmann.ac.il/Grace). Ribbon repre-

sentations were generated with POVScript+ [54] and Raster3D [55], applying secondary struc-

ture assignments provided by DSSP [56].

Results

Generation of an anti-DISC1 camelid single chain VHH antibody

An anti-DISC1 camelid VHH phage library was generated using mRNA obtained from a llama

that had been immunized with an insoluble fraction of recombinant human DISC1598-785

DISC1 camelid antibody complex
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protein. This fragment forms multimers and may be largely responsible for the formation of

pathogenic misassembled DISC1 protein [18]. The insoluble DISC1598-785 protein had been

purified and refolded from inclusion bodies, following overexpression in E. coli. The phage

library generated was then subjected to three rounds of panning by phage display in order

to select the strongest binding clone against the DISC1598-785 protein. There was a gradual

increase in the phage titer in subsequent rounds of panning (3 × 103 CFU/ml, 5 × 103 CFU/ml,

1 × 107 CFU/ml, respectively), indicating a successful selection process.

The strongest binder obtained, clone B5, was isolated and subcloned into the bacterial

expression vector pET-22b (Fig 1A). The camelid VHH antibody was then overexpressed as a

recombinant protein in the periplasm of E. coli, providing an oxidizing environment for

proper folding, and was then purified by Ni2+-NTA affinity chromatography, followed by SEC.

In SEC, the VHH B5 antibody protein eluted prominently as a monomer and, very minimally,

in an oligomeric state (Fig 1B and 1C).

Fig 1. Sequence and purification of the generated anti-DISC1 VHH B5 antibody. (A) Sequence of the anti-DISC1 VHH B5 protein showing the three

complementarity determining regions (CDRs). (B) SEC profile of the purified anti-DISC1 VHH B5 antibody eluting with an apparent molecular mass of 13 kDa. (C)

Coomassie-stained SDS gel loaded with different SEC elution fractions (samples numbered in accordance with the chromatogram). Fraction 1 corresponds to the void

volume, fractions 3 and 4 contain the VHH B5 antibody.

https://doi.org/10.1371/journal.pone.0191162.g001
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Interaction of VHH B5 with the DISC1691-836 protein

In order to confirm and further narrow down the binding of VHH B5 to DISC1, we tested for

its binding to the C region of DISC1 protein by SEC. DISC1691-836 was referred to as ‘C region’

in the structural organisation of the protein proposed recently [19]. This C region is a stable,

distinct structural region within the DISC1 protein and is known to exist as a monomer, unlike

the immunogen used (DISC1598-785), and also holds several physiologically relevant sites such

as the disease variant S704C and the crucial phosphorylation site at S713 [15].

An equimolar mixture of the DISC1691-836 protein and the VHH B5 antibody exhibited a

shift of the SEC elution peak towards a higher apparent molecular mass when compared to the

individual proteins, and the two species were confirmed to co-elute as a complex (Fig 2A),

indicating binding of the VHH antibody to the DISC1 protein fragment. The binding observed

by SEC was further confirmed through SPR, with the affinity of the B5 antibody to the

DISC1691-836 protein being characterized by a dissociation constant (KD) of 139 nM (Fig 2B).

Mapping of the VHH antibody epitope on the DISC1 protein

In order to increase the avidity, as well as to expand the potential applications for functional

analysis, the VHH B5 was cloned into the plasmid vector pLHCX-FC-fs. This allows the secre-

tion, from transfected cells, of a dimeric humanized heavy chain only antibody containing

VHH B5 as the variable region. We first used this VHH–Fc to further narrow down the binding

epitope within DISC1, using DISC1 truncation constructs. Several DISC1 truncation con-

structs obtained previously through ESPRIT (a high-throughput screening technique to

identify soluble regions within any protein) [19], DISC1691-836, DISC1539-655, DISC1480-721,

and DISC1598-715, were probed by western blot using an anti-human secondary antibody.

Here DISC1691-836 and DISC1539-655 were the positive and negative controls respectively,

whereas DISC1480-721 and DISC1598-715 were the test samples. The constructs DISC1691-836,

DISC1480-721 and DISC1598-715 were clearly detected by the VHH–Fc antibody, indicating the

binding site to be contained within the residue range 691–715 (Fig 3A). Similarly, NLF

Fig 2. Interaction of the VHH B5 antibody with DISC1691-836 protein. (A) The SEC profile demonstrates a shift in

the elution peak of the DISC1 fragment and VHH B5 antibody mixture, compared to the individual proteins. Fractions

containing the DISC1-VHH B5 co-elution peak (labelled 1, 2 and 3) were investigated by SDS-PAGE. (B)

Representative SPR sensorgram showing the binding of a VHH B5 antibody concentration series to immobilized

DISC1691-836 protein and the corresponding fitting curve. The KD value is presented as mean ± SD of three

independent experiments.

https://doi.org/10.1371/journal.pone.0191162.g002
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neuroblastoma cells transfected with full length human DISC1 or mouse Disc1 were used to

test the specificity of the VHH-Fc antibody. Intriguingly, only human DISC1 could be detected

and not mouse Disc1 (Fig 3B). An amino acid sequence alignment of the two proteins (Uni-

ProtKB Q9NRI5 and Q811T9) in the 691–715 region (Fig 3C) reveals high overall similarity,

with non-conservative exchanges (human > mouse) at positions 692 (E> K), 699 (R > Q),

and 711 (R > G). The interaction of our VHH B5 with human DISC1 is thus likely to involve

at least one of these charged residues.

SAXS analysis of the DISC1691-836 protein

In order to further characterize complex formation between the DISC1691-836 protein and the

VHH B5, SAXS experiments were performed. As shown in Fig 4A, the shapes of the scattering

curves differ significantly between the VHH B5 on the one hand and the DISC1691-836 protein

(as well as the complex) on the other. Indeed, the two components are expected to attain very

different structures; while immunoglobulin domains are roughly ellipsoidal and mostly con-

tain beta structure, the DISC1691-836 protein is predicted to form several alpha helices with dif-

ferent lengths, resulting in a more elongated and possibly irregular shape [19]. In all three

cases, the Guinier plot features a linear segment at low momentum transfer (inset), as expected

for (essentially) monodisperse samples; the radius of gyration (Rg) can be derived from the

slope of the respective linear fit, yielding values of 2.64 nm, 1.81 nm, and 3.07 nm for the

DISC1691-836 protein, the VHH antibody and their complex, respectively. Furthermore, the

normalized Kratky plots of the primary scattering data (Fig 4B) display a positive peak in the

lower qRg range (ideally at
p

3, for particles perfectly obeying the Guinier approximation),

suggesting a compact three-dimensional fold. However, the subsequent trough is far more

Fig 3. Mapping the binding site of the anti-DISC1 VHH B5 antibody on the DISC1 protein. (A) The binding epitope of the anti-DISC1 VHH B5

antibody was mapped by western blot using truncated DISC1 protein constructs. (+) and (-) indicate positive and negative control, respectively. All

constructs were detected using an anti-His tag antibody, whereas only the constructs covering the 691–715 segment were detected using the anti-DISC1

VHH B5 antibody. The multiple bands with higher apparent mass observed in each lane correspond to SDS-resistant oligomers, which are a typical

feature of DISC1 protein fragments [19]. (B) Detection of human and mouse DISC1 protein in the lysates of transfected NLF cells by western blot, using

either anti-rodent Disc1 C-term antibody, control MEM media, anti-DISC1 VHH B5 antibody or anti-human DISC1 14F2 antibody. The four samples

tested are untransfected NLF cell lysate, mouse Disc1 transfected NLF cell lysate, human DISC1 transfected NLF cell lysate, recombinant human DISC1

(50 ng). (C) Alignment of the human DISC1 epitope (residues 691–715) with the corresponding region of mouse Disc1.

https://doi.org/10.1371/journal.pone.0191162.g003

Fig 4. Investigation of DISC1-VHH complex formation by SAXS. (A) Primary scattering data (Intensity I as a function of momentum

transfer q, the latter being defined as 4π sinθ / λ) for the VHH domain (blue), the DISC1691-836 protein (red), and their complex (yellow).

The inset shows the linear regions of the respective Guinier plots at low q values, as suggested by AUTORG; the slope of the linear fit is

related to the radius of gyration of the respective sample. (B) Normalized Kratky plot of the data shown in (A). A peak at low qRg values

is considered typical of folded globular proteins. (C) Distance distribution functions derived from the data shown in (A), using the

indirect Fourier transformation implemented in DATGNOM. For each species, the intersection with the positive abscissa corresponds to

the maximum particle diameter. A.u., arbitrary units.

https://doi.org/10.1371/journal.pone.0191162.g004
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pronounced for the VHH domain than for DISC1691-836, which indicates that the structure of

the latter is less ordered. As expected from its composition, the complex features an intermedi-

ate behavior. Finally, the different sizes and shapes of the three entities are also obvious from

the real-space distance distribution function (Fig 4C) obtained by indirect Fourier transforma-

tion. Approximate volumes (and corresponding molecular masses) of the hydrated species can

be determined by applying the Porod equation; in accordance with the Rg values, the complex

appears to be significantly larger (76.8 nm3/45.2 kDa) than either the DISC1691-836 protein

(40.9 nm3/24.1 kDa) or the VHH antibody (21.3 nm3/12.5 kDa) alone. Hence, our SAXS analy-

sis is consistent with the binding of the VHH domain B5 to the DISC1691-836 protein in solu-

tion. We note, however, that the size of the complex estimated by this method significantly

exceeds the sum of the values for the two individual proteins. Given that both SEC and SPR

results support a 1:1 stoichiometry, concordant with the expected binding mode of a monoclo-

nal nanobody: this discrepancy is most likely due to a limited degree of oligomerization which

was not detectable in the Guinier plot. A more extensive list of quantities determined from the

SAXS data is provided in Table 1.

Discussion

In this study, we report the first single domain antibody against the human DISC1 protein.

VHH B5 was raised against the DISC1598-785 fragment. Following recombinant expression and

purification, binding of the VHH B5 to the DISC1 protein C region (aa 691–836, previously

identified to constitute a stable and soluble domain [19]) was demonstrated by three indepen-

dent methods: size exclusion chromatography, surface plasmon resonance spectroscopy, and

small angle X-ray scattering analysis. The binding epitope of our anti-DISC1 VHH B5 antibody

was determined to reside between residues 691 and 715 of human DISC1. Moreover, the anti-

body was shown to be specific for human DISC1 and could not detect the mouse Disc1 protein

when expressed in transfected NLF cells. The SAXS data on DISC1691-836 confirmed our previ-

ous findings concerning its monomeric form and extended shape.

In addition to quantitative parameters related to the size of the scattering particles, such as

Rg and Porod volume, the reciprocal space diffraction profiles or, alternatively, the real-space

distance distribution functions (Fig 4) can be used to calculate ab initio reconstructions, which

essentially indicate the outer shape of the scattering particles. These envelopes are shown in

Fig 5 for the DISC1691-836 protein, VHH B5, and their complex. Moreover, we have developed

molecular models to illustrate the structures of these polypeptides and their potential mode of

interaction. It is important to note that the Protein Data Bank does not contain any structures

with obvious sequence similarity to DISC1, precluding conventional homology modeling. We

Table 1. Parameters derived from the SAXS data (MM, molecular mass).

DISC691-836 VHH domain DISC-VHH complex

Rg from Guinier eq. [nm] 2.64 1.81 3.07

Rg from p(r) [nm] 2.68 1.85 3.20

Dmax from p(r) [nm] 9.24 6.34 10.74

I0 from Guinier eq.a 17.31 15.15 36.20

I0 from p(r)a 16.86 13.68 36.35

Porod volume [nm3] 40.9 21.3 76.8

MM from Porod vol. [kDa] 24.1 12.5 45.2

MM theoretical [kDa] 19.4 12.9 32.3

a Indicates approximate molecular mass (in kDa) since data is scaled by sample concentration.

https://doi.org/10.1371/journal.pone.0191162.t001
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therefore resorted to the ab initio approach implemented in QUARK [44] (for details refer to

Experimental Procedures). While this type of structure assembly is inherently less reliable than

template-based approaches, the DISC1691-836 protein should represent a relatively favorable case

due to its moderate size and predicted abundance of helical secondary structure [57]. Indeed,

the resulting model is dominated by a bundle of three long α-helices, the N-terminal one being

connected to the other two by a stretch containing three shorter helical segments (Fig 5, upper

left). In addition to the termini, two extended loops (residues 723–737 and 752–771) are sug-

gested to display significant conformational freedom. Of these, the 723–737 segment is particu-

larly noteworthy since it contains a proline-rich motif (730PPIPP734), proposed to function as

docking site for the Grb2 SH3 domain, based on mutational analyses [58]. Importantly, the

presence of flexible regions in the DISC1691-836 fragment is not only consistent with our SAXS

investigation outlined above, specifically the shape of the Kratky plot, but is also supported by

CD spectroscopy data indicating significant disorder in the 718–771 region [19].

Additional sites with known functional relevance in human DISC1 include S704 and S713,

both of which are shown in a close-up view in Fig 5. Position 704 is altered by a single-nu-

cleotide polymorphism leading to an exchange for cysteine, which has been associated with

mental illness [12]. According to our model, it is located in the first long α-helix and would

not seem to be available for protein-protein interactions. Note that studies investigating the

consequences of the S704C mutation revealed only moderate effects on the oligomerization

Fig 5. Ab initio SAXS reconstructions and molecular models for the DISC1691-836 protein, the VHH domain, and their complex.

The hypothetical DISC1 model (upper left) features a single domain containing three longer and three shorter α-helices. Similar to the

terminal segments, the two extended loops (tilde symbols) are suggested to be poorly ordered. The positions of functionally important

residues S704 and S713 are indicated in a close-up view. Also note the proline-rich motif (ball-and-stick representation, marked by a

hash), which is predicted to be readily accessible for protein-protein interactions. The 691–715 region, suggested to participate in the

epitope for the nanobody, is highlighted in gold while cloning artifacts at the termini are colored dark gray. The model of the VHH

antibody (lower left) displays a canonical immunoglobulin fold, including a conserved disulfide bridge (ball-and-stick model, marked by

an asterisk). The CDR segments, as defined by the Chothia criteria [60], are highlighted in cyan. Finally, the DISC1691-836 fragment and

the nanobody are predicted to interact in a complex (right) featuring a 1:1 stoichiometry.

https://doi.org/10.1371/journal.pone.0191162.g005
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propensity of C-terminal DISC1 fragments [18, 59]; this observation supports the notion that

S704 may not be solvent-exposed. S713, on the other hand, has recently been demonstrated to

be targeted by at least one kinase in vivo, and its phosphorylation is thought to mediate the

switch in DISC1 function in neurodevelopment from a proliferation-promoting to a migra-

tion-promoting state [15]. This residue is located in the loop adjacent to the first helix and is

predicted to be readily accessible. In addition to a change in size and charge of the serine side

chain itself, phosphorylation is likely to impart some degree of local rearrangement (possibly

translating into long-range effects) due to the presence of basic side chains in its vicinity. It is

reasonable to assume that such effects underlie the switch in the DISC1 interactome associated

with S713 phosphorylation.

In contrast to the DISC1691-836 protein, the structure of the VHH B5 domain could be read-

ily modeled based on a template with high sequence similarity (PDB ID 3EZJ). The nanobody

displays the canonical V-type immunoglobulin fold, a sandwich composed of a five-stranded

and a four-stranded β-sheet, which are connected by a conserved disulfide bridge. As shown in

Fig 5, both models fit the SAXS-derived envelopes reasonably well, with NSD values of 1.36 and

1.40 for the DISC1691-836 protein and the VHH B5 antibody, respectively. We also developed a

model of the DISC1-VHH B5 complex via in-silico docking simulations. The arrangement dis-

played in Fig 5 is in good agreement with our ab initio SAXS envelope, and is also consistent

with experimental evidence indicating that core interaction determinants are located within resi-

dues 691–715 region of DISC1. Specifically, the CDR loops of the nanobody may contact residue

R699 or, with a moderate shift in position, E692; both of these charged residues are exchanged

in mouse Disc1, possibly supporting the specificity of our VHH antibody for the human ortholo-

gue. A comprehensive analysis of the DISC691-836-VHH interface, however, would be beyond the

scope of the in-silico efforts reported here, but will have to await experimental determination of

the complex structure, for example by X-ray crystallography.

We anticipate that VHH B5 will perform favorably in a wide range of potential applications.

It should constitute an efficient DISC1 probe for use in in vitro and in vivo investigations and

specifically target the S and C regions, which we have recently suggested to represent structural

units of the DISC1 protein [19]. A relevant prospect would be to utilize VHH B5 in order to

gain mechanistic insight into the aggregation of the DISC1 disease caused by a frame shift

mutation at residue 807 [2], both with the full-length DISC1 protein and the isolated C region.

Given the numerous reports of using single-domain antibodies for structural investigation of

challenging proteins through techniques such as X-ray crystallography and cryo-electron

microscopy, VHH domains like the one described in this study may ultimately pave the way

for experimental determination of the DISC1 structure, which has defied all efforts to date [61,

62].

While this manuscript was under revision, the NMR structure of a C-terminal segment

of mouse Disc1 (residues 765–852, corresponding approximately to half of the C region)

fused to an Ndel1 peptide (residues 238–284) was published [63]. The two moieties essentially

form a three-helix coiled coil, with an extensive hydrophobic core established by apolar side

chains at the a and d positions of the respective heptad repeats. Superposition of this complex

with our ab initio model of human DISC1691-836 (S1 Fig) reveals good agreement within the

ordered DISC1 region shared by both structures, with a root-mean-square distance of 2.32 Å
for the 52 alpha carbon atoms of the helical hairpin (residues 773–800 and 806–829). Intrigu-

ingly, the position of the Ndel1 fragment in the solution structure largely overlaps with the N-

terminal helix (residues 691–711) of our DISC1 model, albeit with a reversed orientation. This

apparent paradox may be rationalized by considering that the helical hairpin structure on its

own exposes a significant hydrophobic surface and would thus seem unlikely to be stable in

solution. In the absence of an extraneous binding partner, this surface may be shielded by a
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complementary amphipathic segment of the DISC1 protein (in either cis or trans), and given

that the human DISC1691-836 monomer is stable in solution [19], the native contact is likely to

be intramolecular (cis), in agreement with our model. We therefore speculate that the extensive

hydrophobic surface involved in non-constitutive interaction with NDEL1 is only exposed on

demand, possibly enabling an additional layer of regulation by, for example posttranslational

modifications.

Supporting information

S1 Fig. Potential interactions of the C-terminal helical hairpin of the DISC1 protein.
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