Karakterizacija srebrovih(I) kompleksa s dijod derivatima pridina spektroskopijom NMR

Zorica, Anamari

Master's thesis / Diplomski rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Rijeka / Sveučilište u Rijeci**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:193:865526

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-12

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of Biotechnology and Drug Development - BIOTECHRI Repository

SVEUČILIŠTE U RIJECI ODJEL ZA BIOTEHNOLOGIJU Diplomski sveučilišni studij Medicinska kemija

Anamari Zorica

Karakterizacija srebrovih(I) kompleksa s dijod derivatima piridina spektroskopijom NMR

Diplomski rad

Rijeka, 2019.

SVEUČILIŠTE U RIJECI ODJEL ZA BIOTEHNOLOGIJU Diplomski sveučilišni studij Medicinska kemija

Anamari Zorica

Karakterizacija srebrovih(I) kompleksa s dijod derivatima piridina spektroskopijom NMR

Diplomski rad

Mentor rada: Prof. dr. sc. Dražen Vikić-Topić

Komentor rada: Dr. sc. Sunčica Roca

Rijeka, 2019.

Diplomski rad obranjen je dana 26. rujna 2019.

pred povjerenstvom:

- 1. Izv. prof. dr. sc. Dean Marković
- 2. Doc. dr. sc. Karlo Wittine
- 3. Prof. dr. sc. Dražen Vikić-Topić

Rad ima 59 stranica, 20+D21 sliku, 2 tablice i 34 literaturna navoda.

Zahvala

Veliku zahvalu dugujem svom mentoru, prof. dr. sc. Draženu Vikić-Topiću na strpljenju, pomoći i usmjeravanju tijekom izrade mog diplomskog rada u Centru za NMR Instituta Ruđer Bošković.

Veliku zahvalu dugujem i komentorici, dr. sc. Sunčici Roci za uložen trud, stručne savjete i nesebičnu podršku kojom mi je olakšala uspješnu izradu diplomskog rada.

Zahvaljujem se svim članovima Centra za NMR Instituta Ruđer Bošković, osobito Nikolini Višić na savjetima i podršci tijekom priprave kompleksa i snimanja spektara NMR.

Zahvaljujem se i dr. sc. Lidiji Brkljačić na snimanju spektara spektrometrije masa, kao i dr. sc. Mateji Đud na uloženom trudu pri snimanju i crtanju FT-IR spektara.

Zahvaljujem se također i dr. sc. Krešimiru Molčanovu na snimanju i rješavanju kristalnih struktura spojeva obuhvaćenih ovim radom.

Veliko hvala mojoj obitelji i prijateljima što su uvijek bili uz mene kada je bilo potrebno, tijekom cijelog studija i sada.

Anamari

SAŽETAK

Reakcijom srebrova(I) nitrata i derivata dijodpiridina (2,5-I₂py, 3,5-I₂py, 2,6-I₂py) u množinskom omjeru 1 : 2 u vodeno-alkoholnom mediju pripravljena su tri nova kompleksa opće formule [Ag(NO₃)(I₂py)₂]. Dobiveni spojevi identificirani su elementnom analizom, a njihova struktura u otopini okarakterizirana je spektrometrijom masa i spektroskopijom NMR. Od 1D tehnika NMR korištene su ¹H i ¹³C ATP, a od 2D homonuklearni ¹H-¹H COSY te heteronuklearni ¹H-¹³C HMQC i ¹H-¹³C/¹⁵N HMBC. U čvrstom stanju, kompleksi su okarakterizirani spektroskopijom IR zračenja. Kristalna i molekulska struktura kompleksa [Ag(NO₃)(2,5–I₂py)₂] određena je i rentgenskom strukturnom analizom.

Dobiveni rezultati ukazuju na vezanje srebrovog(I) iona s dvama ligandima preko nesparenog elektronskog para atoma dušika piridinskog prstena. Rentgenska strukturna analiza monokristala spoja [Ag(NO₃)(2,5–I₂py)₂] otkriva da su pored kovalentnih veza (Ag– N_{py}, Ag–O, Ag–I), u strukturu kristala uključene i nekovalentne halogenske interakcije (O…I–C) koje pridonose stvaranju polimerne strukture spoja.

Ključne riječi: dijodpiridin / rentgenska strukturna analiza / spektrometrija masa / spektroskopija NMR / srebro(I) / supramolekulsko samoudruživanje

SUMMARY

Three novel 1:2 complexes of general formula $[Ag(NO_3)(I_2py)_2]$ were prepared in water-alcohol solution by reaction of silver (I) nitrate with diiodopyridine derivatives (2,5-I₂py, 3,5-I₂py, 2,6-I₂py). All prepared compounds were identified by elemental analysis. Their structure in solution were characterized by mass spectrometry and NMR spectroscopy (¹H, ¹³C ATP, ¹H-¹H COSY, ¹H-¹³C HMQC, ¹H-¹³C/¹⁵N HMBC). In solid state, the complexes were characterized by IR spectroscopy. The crystal and molecular structure of the [Ag(NO₃)(2,5-I₂py)₂] complex was revealed by single crystal X-ray analysis.

The obtained results confirmed the binding of silver(I) ion with two ligands via the lone electron pair of nitrogen atoms of the pyridine ring. X-ray structural analysis of $[Ag(NO_3)(2,5-I_2py)_2]$ reveals that beside covalent bonds $(Ag-N_{py}, Ag-O, Ag-I)$, supramolecular halogen interactions are also present in its crystal structure (O···I-C). Halogen interactions contribute to the final dimensionality by forming polymeric structure of the compound.

Key words: diiodopyridine / MS spectrometry / NMR spectroscopy / silver(I) / supramolecular self-assembly / X-ray diffraction

SADRŽAJ

1. UVOD	1
1.1. Srebro	1
1.1.1. Oksidacijska stanja srebra	1
1.1.2. Biološka aktivnost srebrova(I) iona	2
1.1.3. Utjecaj srebrova(I) iona na zdravlje ljudi	5
1.2. Piridin i njegovi kompleksi sa srebrovim(I) ionom	6
1.3. Jod i halogenska veza	9
1.4. Spektroskopija NMR	11
2. CILJ RADA	14
3. MATERIJALI I METODE	15
3.1. Kemikalije	15
3.2. Priprava spojeva	15
3.2.1. Bis(2,5-dijodpiridin)srebrov(I) nitrat, $[Ag(2,5-I_2py)_2]NO_3(K1)$	15
3.2.2. Bis(3,5-dijodpiridin)srebrov(I) nitrat, $[Ag(3,5-I_2py)_2]NO_3(\mathbf{K2})$	15
3.2.3. Bis(2,6-dijodpiridin)srebrov(I) nitrat, $[Ag(2,6-I_2py)_2]NO_3$ (K3)	15
3.3. Elementna analiza	15
3.4. Spektroskopija NMR u otopini	16
3.5. Spektroskopija IR	17
3.6. Spektrometrija masa	17
3.7. Rentgenska strukturna analiza	17
4. REZULTATI	18
4.1. Kompleksi	18
4.1.1. Bis(2,5-dijodpiridin)srebrov(I) nitrat, $[Ag(2,5-I_2py)_2]NO_3$ (K1)	18
4.1.2. Bis(3,5-dijodpiridin)srebrov(I) nitrat, $[Ag(3,5-I2py)_2]NO_3$ (K2)	18
4.1.3. Bis(2,6-dijodpiridin)srebrov(I) nitrat, $[Ag(2,6-I_2py)_2]NO_3$ (K3)	19
4.2. Ligandi	19
4.2.1. 2,5-dijodpiridin, 2,5-I ₂ py (L1)	19
4.2.2. 3,5-dijodpiridin, 3,5-I ₂ py (L2)	19
4.2.3. 2,6-dijodpiridin, 2,6-I ₂ py (L3)	20
5. RASPRAVA	21
5.1. Spektroskopija NMR	21
5.2. Spektrometrija masa	25
5.3. Spektroskopija IR zračenja	26
5.4. Rentgenska strukturna analiza	27
6. ZAKLJUČAK	29
7. LITERATURA	30

8. DODATAK	. 32
8.1. Slike spektara dobivene spektroskopijom NMR	. 32
8.2. Slike spektara dobivene spektroskopijom IR zračenja	. 44
8.3. Slike spektara dobivene spektrometrijom masa	. 47
9. ŽIVOTOPIS	. 53

1. UVOD

1.1. Srebro

Elementarno srebro (*lat.* argentum) u prirodi dolazi kao bijeli, sjajni, lako obradivi metal (Slika 1), ali i u sastavu ruda zajedno s olovom i bakrom.¹ Zbog svoje relativne kemijske inertnosti i slabe rasprostranjenosti ubraja se u plemenite metale. U periodnom sustavu elemenata srebro (Ag) se nalazi u 11. skupini zajedno s bakrom (Cu) i zlatom (Au). Budući da tvori katione s nepopunjenom *d* orbitalom, ubraja se u prijelazne metale. Elektronska konfiguracija srebra je [Kr]4*d*¹⁰5*s*¹. Industrijski se najčešće dobiva iz ruda.

Primjena srebra u prošlosti započela je vrlo rano što potvrđuju slike pronađene na zidovima egipatskih piramida koje datiraju iz 3400. god. pr. Kr. Srebro se koristilo kao oruđe, u liječenju, za trgovinu te pri uređivanju palača i svetišta.²

Slika 1. Elementarno srebro.

1.1.1. Oksidacijska stanja srebra

Razlikujemo četiri oksidacijska stanja srebra: I, II, III i IV. Kompleksni spojevi srebra s višim oksidacijskim brojevima (> 1) vrlo su rijetki, teško se dobivaju, nestabilni su i do danas nemaju značajnu praktičnu vrijednost.

Najstabilniji i najrasprostranjeniji su kompleksni spojevi srebra(I) u kojima ono s raznolikim ligandima ostvaruje koordinaciju od dva do osam praveći tako spojeve raznolikih struktura. Srebrovi(I) ioni ponašaju se kao akceptori elektrona pa se na njih najčešće koordinira atom nemetala, kao što je npr. ugljik, kisik, dušik, fosfor, sumpor, selen te atomi halogenih elemenata (fluor, klor, brom, jod). Spojevi s halogenidima najvažniji su spojevi srebra. Koriste se pri posrebrivanju metala i izradi ogledala.^{3,4}

1.1.2. Biološka aktivnost srebrova(I) iona

Srebro(I) poznato je odavnina po svojoj biološkoj aktivnosti (Hipokrat, 400. god. pr. Kr.). Koristilo se za čišćenje rana, operacijskih alata i pročišćavanje vode. Otkrićem antibiotika sredinom prošlog stoljeća njegova se upotreba istisnula (Slika 2).

Slika 2. Kemijska struktura penicilina.

Veliki broj antibiotika koji se danas primjenjuje u medicini izgrađuju prirodne ili sintetske organske molekule koje zaustavljaju rast bakterije ili ju u potpunosti unište tako što napadaju njenu staničnu stijenku i blokiraju prijenos tvari potrebnih za održivost bakterijske stanice. Kako je mehanizam djelovanja jednog antibiotika na bakteriju uvijek isti, one s vremenom na njega postaju rezistentne. Najčešći mehanizam razvijanja rezistentnosti je mutacija DNK bakterije.^{5,6,7} Informaciju o rezistentnosti vrlo lako prenose susjednim bakterijama iste, ali i druge vrste.

Zbog napada antibiotika na točno određeno mjesto na bakterijskoj stanici, ali i zbog njihove pretjerane upotrebe, bakterije počinju sve brže razvijati rezistentnost što predstavlja veliku opasnost za zdravlje čovječanstva. U tablici 1 navedeni su lijekovi na koje su bakterijske vrste *Enterococcus faecium, Escherichia coli* i *Salmonella typii* već razvile rezistentnost.

Bakterija	Antibiotik		
Enterococcus faecium	Vancomycin, Gentomicin		
Escherichia coli	Ampicillin, Cephalosporins, Chloramphenicol,		
	Sulfamethoxazole, Streptomycin, Tetracycline		
	Novobiocin, Sulfonamides, Tetracycline,		
Salmonella tynii	Trimethoprim, Amoxycilin, Ampicillin,		
Samonena typi	Chloroamphenicol, Fluoroquinolones,		
	Trimethoprim		

Tablica 1. Prikaz rezistentnosti bakterija na antibiotike.

Problem rezistentnosti bakterija spram antibiotika potaknuo je znanstvenike na istraživanje novih, ali i starih organskih spojeva koordiniranih na ione srebra(I) pokušavajući pronaći one s dobrim antibakterijskim⁸, ali i antiviralnim⁹, antifungalnim¹⁰ i/ili antitumorskim¹¹ djelovanjem. Kompleksi srebra(I) prikladni su za liječenje zahvaljujući manjoj toksičnosti spram eukariotskih, nego prokariotskih stanica¹² te zahvaljujući tome što mikroorganizmi teže razvijaju rezistenciju na djelovanje srebrova(I) iona zbog raznolikog načina djelovanja.

Mehanizam djelovanja kompleksnih spojeva srebra(I) izučavan je kod bakterija (Slika 3). Srebrov(I) ion istovremeno napada bakterijsku stanicu na više mjesta (na površini i u unutrašnjosti) što otežava razvoj rezistentnosti, ali ga na žalost ne čini i nemogućim. Jedna od teorija o antimikrobnom djelovanju pretpostavlja da je upravo ion srebra odgovoran za biološku aktivnost, dok ligandi služe za njegov prijenos u bakterijsku stanicu.¹³ Mehanizam antimikrobnog djelovanja srebrovih(I) kompleksa zasniva se na osjetljivosti srebrovih(I) iona na sulfhidrilne skupine (–SH) u proteinima i enzimima. Srebrovi(I) ioni se vežu na membranske proteine u stanici, deaktiviraju ih i oštećuju staničnu membranu. Drugi način djelovanja je vezanje elektrona koji sudjeluju u oksidativnoj fosforilaciji pri čemu se blokira respiratorni lanac enzima. Osim na enzime, srebrovi(I) ioni mogu se vezati i na purinske i pirimidinske baze bakterijskog nukelozida i/ili plazmida pri čemu pucaju vodikove veze nukleinske kiseline (DNK) te se zaustavlja stanična reprodukcija.⁷

Slika 3. Mehanizmi djelovanja srebrovog(I) iona na bakterijsku stanicu.

Do sada su spojevi srebra(I) pokazali dobre rezultate u liječenju opeklina¹³ i drugih povreda na koži (dekubitus), za sterilizaciju zubnih pomagala itd. Jedan od najpoznatijih kompleksa srebra(I) s primjenom u farmaceutici je srebrov(I) sulfadiazin (Slika 4). Kao lijek dolazi u sastavu kreme namijenjene za liječenje bolesnika s opeklinama i ogrebotinama. Srebrov(I) sulfadiazin inhibira bakterijsku dihrofolatnu sintazu, glavi enzim u metabolizmu folne kiseline, čime direktno djeluje na sintezu DNK bakterije.¹⁵

Slika 4. Srebrov(I) sulfadiazin.

Bakterije se međusobno razlikuju s obzirom na građu i debljinu stanične stijenke pa razlikujemo Gram-pozitivne i Gram-negativne bakterije. Zbog navedene razlike srebrovi(I) ioni različito djeluju na te dvije vrste bakterijskih stanica. Gram-pozitivne bakterije imaju deblju staničnu stijenku (15–80 nm) sastavljenu od teikoične kiseline i mureina. Gram-negativne bakterije imaju dodatnu vanjsku membranu, a stanična stijenka sastavljena im je od više lipidnih slojeva (10 nm). Stanični zid Gram-pozitivnih bakterija negativno je nabijen pa se srebrovi(I) ioni pri dolasku do njega vežu i ne mogu proći dalje u citoplazmu. Kod Gram-negativnih bakterijskih vrsta vrlo mali postotak peptidoglikana u stijenci čini bakteriju osjetljivu na mehanička oštećenja pa srebrovi(I) ioni lakše prodiru u citoplazmu.¹²

1.1.3. Utjecaj srebrova(I) iona na zdravlje ljudi

Teški metali (npr. živa, arsen, srebro, zlato) nas okružuju u svakodnevnom životu. Nalaze se u vodi, tlu i proizvodima koje koristimo. Visoke doze metalnih iona štetne su za ljudski organizam. Toksičnost određenog metala ovisi o njegovoj topljivosti, kemijskoj aktivnosti, prijenosu unutar organizma te mogućnosti stvaranja određenih kompleksa unutar tijela, a uključuje neurotoksičnost, hepatotoksičnost i nefrotoksičnost.¹⁶

Elementarno srebro ima široku upotrebu u svakodnevnom životu. Čovjek srebro unosi udisanjem, zagađenom hranom i vodom, ali u vrlo malim dozama. Apsorpcija srebra putem kože i udisanjem usko je povezana s radnim mjestom pa su najizloženiji izrađivači nakita i fotografi. Zbog široke upotrebe srebra u medicini (zubne plombe, kateteri, operacijski pribor, kozmetika, odjeća) počela se uvelike istraživati njegova toksičnost. Srebro je biološki aktivno u obliku srebrova(I) iona (Ag⁺) te se kao takvo može taložiti u ljudskom organizmu. Kod učestale izloženosti velikim količinama srebrova(I) iona razvija se bolest argirija i/ili argiroza.^{17,18} Glavni simptomi su plavosivo obojenje kože, odnosno bjeloočnica. Efekt obojenja je najizraženiji u područjima koja su izložena sunčevoj svjetlosti: glava, ruke, vrat, dlanovi (Slika 5).^{19,20}

Slika 5. Argirija i argiroza.

Mehanizam taloženja srebra u tijelu je složen. Kako se čestice srebra unose inhalacijom ili ingestijom, tako prvo dolaze u pluća ili želudac čovjeka, odakle (aktivnošću makrofaga u plućima) dospijevaju u probavni trakt. Vrlo niska pH vrijednost u probavnom traktu čovjeka pogoduje otapanju srebra. Dio nastalih srebrovih(I) iona se iz probavnog trakta izlučuje van iz tijela, a dio odlazi u cirkulaciju u kojoj se veže na ligande, najčešće serumske albumine, i radi komplekse s amino ili karboksilnim skupinama nukleinskih kiselina (DNK, RNK). Do plavog obojenja kože dolazi procesom fotoredukcije nakon izlaganja kože ultraljubičastom svjetlu. Fotoredukcijom se srebrove soli pretvaraju u atome metala koji podliježu oksidaciji, odnosno nastaje srebrov(I) sulfid (Ag₂S) koji se taloži u epitelu. Reakcija je ireverzibilna. Metabolizam srebra prikazan je na slici 6.²¹

Slika 6. Metabolizam srebra.

1.2. Piridin i njegovi kompleksi sa srebrovim(I) ionom

Piridin je tercijarni amin, strukturom sličan benzenu (jedna mu je –CH skupina zamijenjena atomom dušika, N) kao što je prikazano na slici 7. Nastala C–N veza kraća je od C–C veze što čini geometrijsku razliku u odnosu na savršeni benzenski šesterokut. Dušikov atom u strukturi prstena čini ovaj spoj bazičnim. Nespareni elektronski par u sp^2 orbitali zaslužan je za trajni dipolni moment molekule. Piridin dolazi kao bezbojna otrovna tekućina, vrlo oštra mirisa, topljiva u alkoholu i vodi.^{22,23} Zahvaljujući nesparenom elektronskom paru na atomu dušika piridinska jezgra lako koordinira s prijelaznim metalima u različitim oksidacijskim stanjima.

Derivati piridina strukturni su dio molekula široke upotrebe (Slika 8). Mogu se pronaći u cigaretama, bojama, lijekovima, a najrašireniji su u obliku nikotinske kiseline (C₆H₅NO₂). Nikotinska kiselina (niacin, vitamin B₃) jedan je od osam vitamina B skupine. Glavna joj je uloga pretvaranje hrane u energiju potrebnu za organizam. Vitamin B₃ pomaže ljudskom organizmu da koristi proteine, a dobar je za kožu, kosu, nokte i živčani sustav. Jedan od derivata nikotinske kiseline je nikotinamid (C₆H₆N₂O₂), građevna jedinica jednog od najvažnijih oksidacijskih koenzima nikotinamid adenin dinukleotida (NAD⁺) i njegovog fosfatnog oblika NADP⁺. Oba oblika sudjeluju u glavnim oksidoredukcijskim reakcijama organizma prenoseći elektrone (stanično disanje, Krebsov ciklus). Nikotin (C₁₀H₁₄N₂), biljni otrov koji se konzumira u obliku duhana cigaretom ili žvakanjem, reapsorbira se u plućima, usnoj šupljini ili koži te izaziva ovisnost.^{24,25}

nikotinamid

nikotinska kiselina

nikotin

Slika 8. Derivati piridina.

Derivati piridina poznati su po antibakterijskim, antifungalnim i antiproliferativnim svojstvima. Budući da srebrovi(I) ioni pokazuju slične karakteristike upravo su njihovi zajednički kompleksni spojevi zanimljivi za izučavanje zbog mogućeg sinergističkog učinka. Derivati piridina na srebrov(I) ion se najčešće vežu tako što dušik iz piridinskog prstena donira svoj nespareni elektronski par pozitivno nabijenom metalnom ionu srebra(I). Nastala veza ima energetsku vrijednost sličnu vodikovoj vezi.

Raznolikosti struktura kompleksnih spojeva srebrova(I) iona i derivata piridina pridonose različite inter- i intramolekulske nekovalentne veze (Slika 9). Rubni atomi mogu tvoriti vodikove ili halogenske veze, metalni ioni mogu ulaziti u metalne interakcije, a piridinski prsteni mogu ostvarivati $\pi \cdots \pi$ interakcije. Do $\pi \cdots \pi$ interakcija dolazi kada se elektrostatski privlače π -elektroni i pozitivno nabijeni prsten σ -okvira. S obzirom na položaj koji molekule zauzmu, razlikujemo glava glava-rep orijentaciju koja je energetski glava te povoljnija. Metal-metal interakcije poznate su kod svih metala 11. skupine periodnog sustava elemenata, а do njihovog stvaranja dolazi interakcijom popunjenih $d^{10}-d^{10}$ orbitala. Te se interakcije između dvaju iona srebra(I) nazivaju argentofilne. Jako stabilne organometalne molekule tvore metal $-\pi$ interakcije do kojih dolazi stvaranjem veze između iona prijelaznih metala i π -elektrona iz nezasićene organske molekule.⁵

Slika 9. Shematski prikaz supramolekulskih interakcija u spojevima derivata piridina i srebrova(I) iona: $n \cdots n$ interakcije (A – glava-rep, B – glava-glava), metal-n interakcije (C), metal-metal interakcije (D).

Jedan od takvih kompleksa opisanih u literaturi je $[Ag(2,6-(CH_2OH)_2py)_2(NO_3)]$ u kojem je koordinacijski broj atoma srebra pet. U koordinacijskoj sferi srebra dolaze dva atoma dušika piridinskog prstena liganda 2,6-(CH₂OH)₂py, te tri atoma kisika i to dva iz etilhidroksilnih skupina vezanih inter- i intramolekulski na srebrov(I) ion te kisik iz nitratnog iona. Susjedne molekule međusobno se povezuju upravo preko Ag–O(CH₂) veza pri čemu nastaju centralnosimetrični dimeri (Slika 10). Crvenom isprekidanom linijom prikazane su Ag–O veze u dimeru.²⁶

Slika 10. Struktura [Ag(2,6-(CH₂OH)₂py)₂(NO₃)].

1.3. Jod i halogenska veza

Halogeni elementi nalaze se u 17. skupini periodnog sustava elemenata (fluor, klor, brom, jod). U zadnjoj ljusci imaju sedam valentnih elektrona, odnosno samo im jedan elektron potreban za postizanja okteta, što je razlog njihovoj velikoj reaktivnosti. U prirodi dolaze u obliku dvoatomnih molekula (Cl₂, Br₂, I₂) ili u spojevima s jednovalentnim metalima pri čemu tvore široko rasprostranjene soli kao što je natrijev klorid (NaCl).²⁷ Njihovi najpoznatiji spojevi su oni s vodikom (HCl, HBr, HF, HI) koji se u vodenim otopinama ponašaju kao jake kiseline.

Jod je najteži halogeni element koji u prirodi dolazi u sastavu različitih minerala. Sadrže ga sva živa bića i biljke. U ljudskom organizmu aktivno se nakuplja u tireoidnoj žlijezdi pod utjecajem tireotropnog hormona (TSH). Unos joda putem hrane važan je za normalnu funkciju štitne žlijezde. Smanjenim unosom joda (<100 µg/danu) aktivira se hipotalamus koji dodatno luči TSH kako bi se zadovoljile potrebe štitnjače. Upravo nedostatna količina joda za biosintezu hormona štitne žlijezde uzrokuje razne poremećaje njezina rada kao što su: hipertrofija, hipertireoza i hipotireoza.²⁸

Kod halogenih elemenata, u 19. stoljeću, opažena je međumolekulska interakcija nazvana halogenska veza koja je vrlo slična vodikovoj vezi.²⁹ Halogenska veza je usmjerena (linearna) interakcija elektrostatske prirode koja se ostvaruje između atoma halogenog elementa (donor veze) i područja veće elektronske gustoće atoma ili funkcionalne skupine (akceptora veze). Energija halogenske veze rasponu od slabih veza do vrlo jakih je u (10–150 kJ mol⁻¹). Linearnije i kraće veze su jače. Kao atomi donora najčešće dolaze atomi joda ili broma, vezani na molekule s elektron-odvlačećim skupinama. Zbog anizotropne raspodjele gustoće atoma halogenog elementa oni mogu biti i akceptori i donori halogenske veze (Slika 11). Akceptori halogenske veze su Lewisove baze i to osim drugog halogenog atoma može biti atom kisika, sumpora, selenija, dušika, fosfora, antimona i arsena.^{3,30}

Slika 11. Shematski prikaz anizotropne raspodjele elektronske gustoće oko kovalentno vezanog atoma halogenog elementa u molekuli.

Interhalogene interakcije kod kojih su halogeni atomi i donori i akceptori halogenske veze možemo podijeliti na dva tipa: I i II. Oni se međusobno razlikuju po geometrijskom načinu vezanja atoma. U tipu I, minimalizira se odbojnost dvaju halogena tako da se isprepleću pozitivni dijelovi molekule, a kut u atomu θ_1 je približno jednak θ_2 . Kod tipa II halogen-halogen vezanja elektrofilni dio atoma prilazi nukleofilnoj regiji drugog te se tako tvori veza. U tipu II kut θ_1 jednak je

Slika 12. Dva tipa halogenskih veza.

1.4. Spektroskopija NMR

Nuklearna magnetna rezonancija (NMR) analitička je metoda koja se koristi za karakterizaciju bioloških, organskih i bioanorganskih molekula. Temelji se na interakciji jezgri atoma i elektromagnetskog zračenja. Sve elementarne kemijske čestice imaju svojstvo spina. Da bi efekt NMR bio moguć, spinski kvantni broj jezgre mora biti različit od nule $(I \neq 0)$, odnosno atomski broj mora biti neparan. Kod parnog zbroja protona i neutrona svi spinovi u jezgri su spareni te je ukupan kvantni broj jednak nuli (I = 0). Kada se na jezgre atoma djeluje jačim, vanjskim magnetskim poljem one mogu zauzeti 2I + 1 spinskih stanja ili orijentacija pa kod jezgri sa spinskim kvantnim brojem I = 1/2 postoje samo dvije orijentacije i to: u smjeru magnetskog polja (+1/2), niža energija, te u suprotnom smjeru od polja (-1/2), viša energija (Slika 13). Napučenost jezgri u području niže energije uvijek je veća (Boltzmanova raspodjela). Djelovanjem radiofrekvencijskog zračenja jezgre dobivaju energiju i prelaze u područje više energije, a prestankom njegova djelovanja otpuštaju se, vraćaju u područje niže energije pri čemu emitiraju zračenje koje se bilježi kao raspad slobodne magnetizacije (FID, engl. Free Induction Decay), odnosno kao signal NMR.³¹

Slika 13. Orijentacija spina nakon djelovanja vanjskog magnetskog polja.

Temeljni parametri u NMR su kemijski pomak (δ), spin-spin sprega (J) te vrijeme relaksacije (T_1 , T_2). Kemijski pomak je određen magnetskim poljima koja stvaraju elektroni koji okružuju jezgru. Magnetska polja atoma su suprotnog predznaka od vanjskog magnetskog polja zbog čega je jezgra izložena manjem rezultirajućem polju (B_{rez}), odnosno zasjenjena je (1.1).

$$B_{rez} = B_{vanjsko}(1 - \sigma) \tag{1.1}$$

Rezultirajuće polje izravno je proporcionalno vanjskom polju. Kemijski pomak izražava se u dijelovima na milijun (ppm, *engl.* parts per milion) u odnosu na neki standard (npr. tetrametil silan, TMS). Spin-spin sprega je interakcija preko veznih elektrona između magnetskog momenta istraživane i susjedne jezgre. Sprezanje jezgri opisujemo konstantom sprege *J* koju izražavamo u hercima (Hz). Vrijednost sprege, kao ni kemijski pomaci se ne mijenjaju promjenom vanjskog magnetskog polja pa se spektri snimljeni na instrumentima s različitom jakosti magneta mogu međusobno uspoređivati. Pobuđeni se spinovi nakon prestanka djelovanja pulsa radiofrekvencijskog zračenja vraćaju u osnovno stanje pri čemu razlikujemo T_1 i T_2 vrijeme otpuštanja. T_1 je longitudinalno otpuštanje kod kojeg se energija otpušta u okolinu u obliku termalne vibracije ili rotacije. T_2 je transverzalno otpuštanje do kojeg dolazi do prelaska energije na spin susjednih jezgri što uzrokuje promjenu kvantnih stanja.^{32,33}

U spektroskopiji NMR najčešće se primjenjuju jednodimenzijske i dvodimenzijske tehnike. Jednodimenzijskim tehnikama najčešće se snimaju ¹H, ¹³C, ¹⁵N, ¹⁹F i ³¹P jezgre, a dobiveni signali dolaze od neekvivaletnih jezgri u

istraživanom spoju. ¹H spektar je kvantitativni pa se integriranjem površine ispod signala otkriva i broj protona u ispitanom spoju. ¹³C ATP (*engl.* Attached Proton Test) tehnika nam otkriva broj i vrstu atoma ugljika u spoju (CH, CH₂, CH₃, Cq).

Dvodimenzijske tehnike se temelje na sprezanju između spinova jezgri. Razlikujemo one koje detektiraju sprezanje kroz kemijske veze (skalarno) te kroz prostor (dipolno). Sprege se javljaju između istovrsnih jezgri (homonuklearna sprega), te između različitih jezgri (heteronuklearna sprega). Najčešće korištene homonuklearne 2D tehnike su ¹H—¹H COSY (*engl.* Correlation Spectroscopy), ¹H—¹H NOESY (*engl.* Nuclear Overhauser Enhancement Spectroscopy) i ¹H—¹H ROESY (*engl.* Rotating Frame Overhauser Enhancement).³² COSY je tehnika koja kolerira kemijske pomake ¹H protona koji su u međusobnoj interakciji kroz dvije (geminalna sprega, ²J) ili tri veze (vicinalna sprega, ³J). NOESY tehnika pomaže pri određivanju trodimenzijske strukture molekula. Temelji se na dipol-dipol interakciji dviju ¹H jezgri, odnosno interakciji kroz prostor. Dipolnom relaksacijom, tj. promjenom intenziteta signala pri prijenosu magnetnog zračenja dipolnom spregom dolazi do promjene intenziteta signala i to nazivamo nuklearni Overhauserov efekt (NOE). NOE efekt ograničen je na prostornu udaljenost između protona koja mora biti manja od 5 Å.

Višestruki kvantni prijelazi ne mogu se detektirati uobičajenom spektroskopijom koja ima manju energiju, kod takvih prijelaza koristimo spektroskopiju višestrukih prijelaza. Ona proučava prijelaze koji su zabranjeni pravilom $\Delta m = \pm 1$, tj. Δm koji je veći od jedan može postojati samo u molekulama koje imaju više od 2 energetske razine. Da bi se ovaj oblik prijelaza izazvao potreban je višestruki slijed pulseva. Spektroskopiju višestrukih prijelaza opisuju dvije tehnike: HMQC (*engl.* Heteronuclear Multiple Quantum Coherence) i HMBC (*engl.* Heteronuclear Multiple Bond Coherence). HMQC je inverzna tehnika C, H korelacije u kojoj se ¹³C jezgre dokazuju preko detektiranja ¹H jezgri pri čemu se ¹³C izotop ugljika raspreže od protona. Ova se tehnika temelji na tome da se detektiraju ¹H kemijski pomaci koji su u korelaciji s ¹³C jezgrama, a detekcija se vrši kroz jednu kemijsku vezu putem heteroatomne sprege H–C. HMBC je također inverzna tehnika kod koje se detekcija vrši kroz dvije, tri ili četiri kemijske veze (²J_{H-C}, ³J_{H-C}, ⁴J_{H-C}).^{32,33}

2. CILJ RADA

Istraživanja u ovom radu usmjerena su na pripravu i karakterizaciju srebrovih(I) kompleksa s tri derivata dijod piridina i to 2,5-, 3,5- i 2,6-dijodpiridinom. Svi kompleksi pripravljeni su u vodeno-alkoholnoj otopini izravnim miješanjem liganada sa srebrovim(I) nitratom.

Dobiveni kompleksi okarakterizirani su na temelju rezultata dobivenih elementnom analizom, 1D i 2D tehnikama spektroskopije NMR u otopini, spektroskopijom IR u čvrstom stanju te spektrometrijom masa (ESI-MS). Od tehnika NMR korištene su jednodimenzijske ¹H i ¹³C APT, te dvodimenzijske ¹H-¹H COSY, ¹H-¹³C HMQC i ¹H-¹³C/¹⁵N HMBC. Kristal spoja [Ag(2,5-I₂py)₂(NO₃)] identificiran je i rentgenskom strukturnom analizom.

3. MATERIJALI I METODE

3.1. Kemikalije

Kemikalije korištene u pripravi i analizi uzoraka upotrebljene su bez dodatnog pročišćavanja, a nabavljene su od sljedećih proizvođača: Kemika, Cambridge Isotope Laboratories, TCI, ALDRICH, SYNCHEM UG & CO KG.

3.2. Priprava spojeva

3.2.1. Bis(2,5-dijodpiridin)srebrov(I) nitrat, $[Ag(2,5-I_2py)_2]NO_3(K1)$

Otopi se 0,17 g AgNO₃ (1 mmol) u 1 mL destilirane vode. 0,66 g 2,5–I₂py (2 mmol) otopi se u 66 mL etanola, te uz se uz miješanje dokapava vodenoj otopini srebrova(I) nitrata. Pri miješanju nastaje bijeli talog. Smjesa se ostavi stajati u mraku pri sobnoj temperaturi. Nakon 48 sati reakcijska smjesa se profiltrira na vakuum pumpi.

3.2.2. Bis(3,5-dijodpiridin)srebrov(I) nitrat, $[Ag(3,5-I_2py)_2]NO_3(K2)$

 $0,05 \text{ g AgNO}_3 (1 \text{ mmol})$ otopi se u 1 mL destilirane vode. $0,22 \text{ g } 3,5-I_2$ py (2 mmol) otopi se u 50 mL etanola, te se uz miješanje dokapava vodenoj otopini srebrova(I) nitrata. Smjesu se ostavi stajati u mraku pri sobnoj temperaturi. Nakon 48 sati reakcijska smjesa se profiltrira na vakuum pumpi.

3.2.3. Bis(2,6-dijodpiridin)srebrov(I) nitrat, $[Ag(2,6-I_2py)_2]NO_3(K3)$

U 1 ml destilirane vode otopi se 0,05 g AgNO₃ (1 mmol). 0,22 g 2,6–I₂py (2 mmol) otopi se u 45 mL etanola, te uz miješanje dokapava vodenoj otopini srebrova(I) nitrata. Alkoholna smjesa se stavi stajati u mraku pri sobnoj temperaturi. Nakon 48 sati reakcijska smjesa se profiltrira na vakuum pumpi.

3.3. Elementna analiza

Sadržaj ugljika, vodika i dušika u priređenim kompleksima određen je pomoću CHNS analizatora Perkin Elmer 2400 Series II u Zavodu za fizičku kemiju Instituta Ruđer Bošković. Dobiveni rezultati (*Anal.*) izraženi su kao maseni postoci s točnošću od ±0,3%, a uspoređeni su s teorijskim vrijednostima izračunatima prema empirijskoj formuli spoja.

3.4. Spektroskopija NMR u otopini

Spektri NMR snimljeni su u Centru za NMR Instituta Ruđer Bošković na instrumentu Bruker Avance 600 (14,1 T). Pri snimanju je korištena direktna 5 mm proba tipa BBO BB-1H Z-GRD Z8478/53. Uzorci su otopljeni u deuteriranom dimetilformamidu (DMF- d_7) i snimljeni pri temperaturi od 25 °C. Spektri ¹H i ¹³C jezgri snimljeni su pri frekvenciji od 600,130 MHz, odnosno 150,903 MHz. Kemijski pomaci (δ / ppm) određeni su prema signalima metilnih skupina u otapalu (DMF- d_7) i to za spektar ¹H prema signalu pri 2,75 ppm te za ¹³C prema signalu pri 29,76 ppm. Za snimanje spektara ¹H NMR korištena je spektralna širina od 20 ppm, relaksacijsko vrijeme odgode od 1,0 s i vrijeme akvizicije od 1,36 s. Broj pulseva po spektru bio je u rasponu od 20 do 64. Digitalno razlučivanje iznosi 0,36 Hz po točki. Spektri ¹³C APT snimljeni su uz spektralnu širinu od 260 ppm, relaksacijsko vrijeme odgode od 1,0 s i vremenom akvizicije od 0,832 s. Broj pulseva po svakom spektru iznosio je od 200 do 800 snimaka. Digitalno razlučivanje je iznosilo 0,60 Hz.

Spektri ¹H–¹H COSY snimljeni su 2048 točaka u dimenziji f_2 i 276 točaka u *f*₁ dimenziji. Broj snimaka u spektru je 2. Spektralna širina snimanja iznosi 16 ppm s relaksacijskim vremenom odgode od 1,0 s. Digitalno razlučivanje po točki u dimenziji f_1 iznosi 34,79, dok za dimenziju f_2 rezolucija iznosi 4,69 Hz po točki. Pri snimanju spektara ¹H–¹³C HMQC i ¹H–¹³C HMBC korišteno je 256 inkremenata u f_1 dimenziji dok je u f2 dimenziji snimano 2048 točaka. Za svaki inkrement primijenjeno je 4 do 8 pulseva uz relaksacijsko vrijeme odgode od 1,0 s. Za snimanje spektra korištena je spektralna širina u iznosu od 36240 Hz za f_1 , dok je za f_2 9615 Hz. Digitalno razlučivanje 4,69 (f_2) i 141,48 Hz (f_1) po točki. U eksperimentima ¹H–¹⁵N HMBC korišteno je 2048 točaka u dimenziji f_2 i 256 inkremenata u dimenziji f_1 . Broj pulseva po jednom spektru je 16, uz relaksacijsko vrijeme odgode u iznosu od 1,5 s. Spektralna širina iznosila je 9615,38 Hz (f_2) i 36600 Hz (f_1). Digitalno razlučivanje spektra u dimenziji f_1 jednak je 4,69, a u f_2 dimenziji iznosi 142,56 Hz. Kod svih spektara HMBC, korišteno je dodatno vrijeme opuštanja od 0,065 s kako bi se u spektru vidjele i C–H, odnosno N–H sprege kroz više veza (2–4).

3.5. Spektroskopija IR

Infracrveni spektri svih liganada i pripremljenih kompleksa snimani su na Zavodu za ogansku kemiju i biokemiju Instituta Ruđer Bošković na instrumentu Fourier Transform – Infrared Attenuated Total Reflection PerkinElmer UATR Two. Područje elektromagnetskog zračenja je od 4000 do 200 cm⁻¹. Dobiveni rezultati su prikazani kao ovisnost transmitancije (*T*) o valnom broju (\tilde{v}) izraženom u cm⁻¹.

3.6. Spektrometrija masa

Masena spektrometrija sintetiziranih srebrovih(I) kompleksa snimljena je na Institutu Ruđer Bošković u Zavodu za organsku kemiju i biokemiju na spektrometru mase s trostrukim kvadrupolom Agilent 6420. Za ionizaciju je korištena ESI (*engl.* Electron spray ionization) metoda u pozitivnom i negativnom načinu rada (ESI⁺-MS i ESI⁻-MS). Uzorci su otopljeni u metanolu. Primijenjeni napon kolizijske ćelije iznosio je 135,0 V. Rezultati su prikazani kao omjer mase i naboja (*m/z*) u ovisnosti o relativnom intenzitetu signala.

3.7. Rentgenska strukturna analiza

Mjerenja su izvedena na Zavodu za fizičku kemiju Instituta Ruđer Bošković na rentgenskom difraktometru Xcalibur Nova R (Oxford Diffraction). Uređaj je opremljen specijalnom mikrofokusnom rentgenskom cijevi i višeslojnom optikom za fokusiranje rentgenskih zraka. Snaga izvora X-zraka je oko 50 W. Instrument kao detektor ima CCD kameru. Mjerenja su vršena pri 293 K.

4. REZULTATI

4.1. Kompleksi

4.1.1. Bis(2,5-dijodpiridin)srebrov(I) nitrat, [Ag(2,5-I₂py)₂]NO₃ (**K1**)

Iskorištenje: 0,33 g (60%).

Anal. Računato za C₁₀H₆N₃O₃I₄Ag (831,6): C, 14,44; H, 0,73; N, 5,05. Nađeno: C, 12,24; H, 0,79; N, 5,48%.

¹H NMR (600,130 MHz, DMF- d_7 , 25 °C): δ 8,70 (1H, s, H-6), 7,94 (1H, dd, ³J_{H-4,H-3} = 8,24 Hz, ⁴J_{H-4,H-6} = 2,43 Hz, H-4), 7,77 (1H, d, ³J_{H-3,H-4} = 8,34 Hz, H-3) ppm. ¹³C (150,903 MHz, DMF- d_7 , 25 °C): δ 157,6 (1C, C-6), 147,1 (1C, C-4), 137,3 (1C, C-3), 117,9 (1C, C-2), 93,8 (1C, C-5) ppm. ¹⁵N (61,834 MHz, DMF- d_7 , 25 °C): δ 338,4 (2N, N-py) ppm.

FT-IR (\tilde{v} / cm⁻¹): 3084 (w-m), 1742 (w), 1551 (m), 1403 (m-s), 1344 (m-s), 1132 (m), 1082 (m), 1018 (m-s), 833 (m), 712 (w-m), 645 (w), 477 (w-m).

ESI⁺-MS (MeOH, *m/z*): 106,9 [Ag]⁺, 203,9 [Ipy]⁺, 277,8 [Ag₂(NO₃)]⁺, 331,8 [L+H]⁺, 437,7 [AgL]⁺, 768,5 [AgL₂+H]⁺. ESI⁻-MS (MeOH, *m/z*): 230,8 [Ag(NO₃)₂]⁻, 401,7 [Ag₂(NO₃)₃]⁻.

4.1.2. Bis(3,5-dijodpiridin)srebrov(I) nitrat, [Ag(3,5-I2py)₂]NO₃ (**K2**)

Iskorištenje: 0,2 g (52%).

Anal. Računato za C₁₀H₆N₃O₃I₄Ag (831,6): C, 14,44; H, 0,73; N, 5,05. Nađeno: C, 14,08; H, 0,98; N, 5,14%.

¹H NMR (600,130 MHz, DMF- d_7 , 25 °C): δ 8,89 (2H, d, ${}^{4}J_{H-4,H-2/6} = 1,83$ Hz, H-2/6), 8,71 (1H, t, ${}^{4}J_{H-4,H-2/6} = 1,83$ Hz, H-4) ppm. ¹³C (150,903 MHz, DMF- d_7 , 25 °C): δ 154,2 (2C, C-2/6), 151,6 (1C, C-4), 94,0 (2C, C-3/5)) ppm. ¹⁵N (61,834 MHz, DMF- d_7 , 25 °C): δ 321,1 (2N, N-py) ppm.

FT-IR (\tilde{v} / cm⁻¹): 3056 (w-m), 1793 (w), 1532 (m), 1512 (w), 1404 (m), 1316 (s), 1292 (s), 1073 (m), 1015 (m), 949 (w-m), 875 (m), 821 (w-m), 733 (w-m), 684 (m).

ESI⁺-MS (MeOH, *m/z*): 106,9 [Ag]⁺, 331,8 [L+H]⁺, 437,1 [AgL]⁺. ESI⁻-MS (MeOH, *m/z*): 230,8 [Ag(NO₃)₂]⁻, 401,7 [Ag₂(NO₃)₃]⁻. 4.1.3. Bis(2,6-dijodpiridin)srebrov(I) nitrat, $[Ag(2,6-I_2py)_2]NO_3$ (**K3**)

Iskorištenje: 0,18 g (56%).

Anal. Računato za C₁₀H₆N₃O₃I₄Ag (831,6): C, 14,44; H, 0,73; N, 5,05. Nađeno: C, 12,31; H, 0,49; N, 5,29%.

¹H NMR (600,130 MHz, DMF- d_7 , 25 °C): δ 7,97 (2H, d, ${}^{4}J_{H-4,H-3/5}$ = 8,99 Hz, H-3/5), 7,30 (1H, t, ${}^{4}J_{H-4,H-3/5}$ = 8,99 Hz, H-4) ppm. ¹³C (150,903 MHz, DMF- d_7 , 25 °C): δ 140,1 (1C, C-4), 134,9 (2C, C-3/5), 117,3 (2C, C-2/6) ppm. ¹⁵N (61,834 MHz, DMF- d_7 , 25 °C): δ 350,2 (2N, N-py) ppm.

FT-IR (\tilde{v} / cm⁻¹): 3090 (w), 1533 (m), 1506 (w), 1402 (m-s), 1343 (s), 1165 (m-s), 1119 (m), 1073 (w-m), 991 (w-m), 788 (m), 718 (m), 648 (w).

ESI⁺-MS (MeOH, *m/z*): 106,9 [Ag]⁺, 203,9 [Ipy]⁺, 331,8 [L+H]⁺, 437,1 [AgL]⁺. ESI⁻-MS (MeOH, *m/z*): 401,7 [Ag₂(NO₃)₃]⁻.

4.2. Ligandi

4.2.1. 2,5-dijodpiridin, 2,5-I₂py (**L1**)

¹H NMR (600,130 MHz, DMF- d_7 , 25 °C): δ 8,68 (1H, s, H-6), 7,92 (1H, dd, ³ $J_{H-4,H-3} = 8,41$ Hz, ⁴ $J_{H-4,H-6} = 2,57$ Hz, H-4), 7,75 (1H, dd, ⁵ $J_{H-3,H-6} = 0,63$ Hz, ³ $J_{H-3,H-4} = 8,10$ Hz, H-3) ppm. ¹³C (150,903 MHz, DMF- d_7 , 25 °C): δ 157,1 (1C, C-6), 146,7 (1C, C-4), 137,1 (1C, C-3), 117,1 (1C, C-2), 93,9 (1C, C-5) ppm. ¹⁵N (61,834 MHz, DMF- d_7 , 25 °C): δ 345,9 (1N, N-py) ppm.

FT-IR (\tilde{v} / cm⁻¹): 3076 (m), 3005 (s), 2871 (w-m), 2745 (w), 2488 (w), 1965 (w), 1820 (w-m), 1530 (s), 1434 (s), 1349 (s), 1139 (m), 1055 (m-s), 988 (s), 912 (m), 825 (s), 712 (m), 620 (m), 468 (m).

ESI⁺-MS (MeOH, *m/z*): 331,8 [L+H]⁺. ESI⁻-MS (MeOH, *m/z*): 126,9 [I]⁻.

4.2.2. 3,5-dijodpiridin, 3,5-I₂py (**L2**)

¹H NMR (600,130 MHz, DMF- d_7 , 25 °C): δ 8,64 (1H, t, ${}^4J_{H-4,H-2/6} = 1,73$ Hz H-4), 8,42 (2H, s, H-2/6) ppm. ¹³C (150,903 MHz, DMF- d_7 , 25 °C): δ 153,9 (2C, C-2/6), 151,2 (1C, C-4), 94,2 (2C, C-3/5) ppm. ¹⁵N (61,834 MHz DMF- d_7 , 25 °C): δ 333,9(1N, N-py) ppm.

FT-IR (\tilde{v} / cm⁻¹): 3068 (m), 2997 (s), 2932 (m), 2835 (m), 2723 (w-m), 2627 (w), 2423 (w-m), 1898 (w-m), 1808 (w-m), 1524 (m), 1398 (m-s), 1162

(w-m), 1068 (m), 998 (m-s), 874 (m-s), 687 (s), 636 (m).

ESI⁺-MS (MeOH, *m/z*): 331,8 [L+H]⁺. ESI⁻-MS (MeOH, *m/z*): 126,9 [I]⁻.

4.2.3. 2,6-dijodpiridin, 2,6-I₂py (**L3**)

¹H NMR (600,130 MHz, DMF- d_7 , 25 °C): δ 7,94 (2H, d, ${}^{4}J_{H-4,H-3/5} =$ 7,81 Hz, H-3/5), 7,28 (1H, t, ${}^{4}J_{H-4,H-3/5} =$ 7,81 Hz, H-4) ppm. ¹³C (150,903 MHz, DMF- d_7 , 25 °C): δ 140,0 (1C, C-4), 134,8 (2C, C-3/5), 117,0 (2C, C-2/6) ppm. ¹⁵N (61,834 MHz, DMF- d_7 , 25 °C): δ 350,0 (1N, N-py) ppm.

FT-IR (ṽ / cm-1): 3083 (w-m), 3004 (m-s), 2923 (w), 2764 (w), 2596 (w), 2195 (w-m), 2000 (w-m), 1536 (s), 1370 (s), 1165 (m), 1083 (m-s), 972 (m-s), 781(m-s), 709 (w-m), 637 (w-m).

ESI⁺-MS (MeOH, *m/z*): 331,8 [L + H]⁺. ESI⁻-MS (MeOH, *m/z*): 126,9 [I]⁻.

5. RASPRAVA

Reakcijom srebrova(I) nitrata (AgNO₃) s dijod derivatima piridina (**L1**, **L2**, **L3**) u omjeru 1 : 2 sintetizirana su tri nova srebrova kompleksa (**K1**, **K2**, **K3**) opće formule [Ag(NO₃)(I₂py)₂] (Tablica 2). Svi su kompleksi pripravljeni izravnim miješanjem liganada otopljenih u etanolu sa srebrovim(I) nitratom otopljenim u vodi. Uzorci kompleksa izolirani su s iskorištenjima od 50–60%.

Spoj	Naziv spoja	Formula spoja
K1	Bis(2,5-dijodpiridin)srebrov(I) nitrat	[Ag(2,5–I ₂ py) ₂ (NO ₃)]
К2	Bis(3,5-dijodpiridin)srebrov(I) nitrat	[Ag(3,5-I ₂ py) ₂ (NO ₃)]
К3	Bis(2,6-dijodpiridin)srebrov(I) nitrat	[Ag(2,6-I ₂ py) ₂ (NO ₃)]
L1	2,5-dijodpiridin	2,5-I2py
L2	3,5-dijodpiridin	3,5-І2ру
L3	2,6-dijodpiridin	2,6-I2py

Tablica 2. Nazivi, formule i oznake sintetiziranih kompleksa (**K1–K3**) i njihovih liganada (**L1–L3**).

5.1. Spektroskopija NMR

Pomoću spektara dobivenih ¹H, ¹³C APT i ¹H–¹⁵N HMBC tehnikama NMR određena je struktura pripravljenih kompleksa **K1–K3** u otopini. Asignacija signala ¹H i ¹³C u piridinskom prstenu potpomognuta je analizom korelacijskih signala jezgri koje su međusobno u skalarnoj sprezi, a dobiveni su snimanjem ¹H-¹H COSY, ¹H-¹³C HMQC i ¹H-¹³C HMBC spektara svih triju uzoraka liganada (**L1–L3**). Svi spektri NMR snimljeni su u deuteriranom dimetilformamidu (DMF-*d*₇). Slike svih snimljenih spektara NMR priložene su u *Dodatku*.

Položaj signala u ¹H i ¹³C spektrima NMR istraživanih spojeva u skladu je s prirodom piridinskog prstena. ¹H i ¹³C jezgre smještene u *ortho-* i *para-* položaju u odnosu na dušikov atom piridinskog prstena imaju manju gustoću elektrona pa rezoniraju pri višim frekvencijama, odnosno u nižem magnetskom polju. ¹H i ¹³C jezgre u *meta-* položaju imaju veću elektronsku gustoću i rezoniraju pri nižim frekvencijama, odnosno pri višem magnetskom polju. Na slici 14 je prikazano brojanje atoma u piridinskom prstenu korišteno u asignaciji signala u spektrima NMR.

Slika 14. Brojanje atoma piridinskog prstena korišteno u asignaciji signala u spektrima NMR.

Signali u ¹H, ¹³C i ¹⁵N spektrima uzoraka **K1–K3** pokazuju značajan kemijski pomak u odnosu na isti signal u spektru odgovarajućeg liganda što potvrđuje nastanak kompleksa i njegovu stabilnost u otopini. Jedan set signala u spektrima kompleksa potvrđuje vezanje srebrova(I) iona i liganada u množinskom omjeru 1 : 2. U ¹H spektrima svih kompleksa signali dolaze u području od 7,30–8,89 ppm, a njihov multiplicitet u skladu je s položajem jezgre u molekuli. Kod spoja K1 najodsjenjeniji je signal jezgre H-6 (singlet pri 8,70 ppm), dok su signali jezgri H-3 i H-4 zasjenjeniji i dolaze pri 7,77 ppm, odnosno pri 7,94 ppm kao dubleti dubleta zbog njihove međusobne sprege (\approx 8,30 Hz) i sprege s jezgrom atoma H-6 (2,43 Hz). **K2** i **K3** daju vrlo slične setove signala u ¹H spektrima, jedan dublet i jedan triplet koji su kod **K2** odsjenjeniji što se pripisuje položaju supstituiranog atoma joda. H-4 u spektru K2 dolazi pri 8,71 ppm, a H-2/6 pri 8,89 ppm. Konstanta sprege signala H-4 je mala (1,83 Hz) jer je to sprega s jezgrama atoma H-2/6 kroz četiri kemijske veze. Kemijski pomak jezgri H-2/6 je pri 8,89 ppm. U spoju K3 signal jezgre H-4 je pronađen pri kemijskom pomaku od 7,30 ppm, pocijepan je u triplet, ali sa značajno većom konstantom sprege (8,99 Hz). To je cijepanje koje nastaje zbog sprege s jezgrama atoma H-3/5 (dublet pri 8,89 ppm) koji su u prstenu od jezgre H-4 odvojeni kroz tri kemijske veze.

Usporedimo li kemijske pomake jezgara vodika kompleksa (**K1–K3**) s pomacima signala istih atoma u ligandima (**L1–L3**) zaključujemo da se vezanjem srebrovog(I) iona na ligande jezgre zasjenjuju za \approx 0,02 ppm kod **K1** i **K3**, odnosno za \approx 0,2 ppm kod **K2** (Slika 15). Do razlike u pomacima ¹H jezgri dolazi zbog elektrostatskog induktivnog efekta.³⁴ Nakon koordinacije liganada na srebrov(I) ion preko slobodnog elektronskog para atoma dušika, dušik nadomješta smanjenje elektronske gustoće pomicanjem parcijalnog naboja sa susjednih Catoma, a oni pak sa susjednih H-atoma zbog razlike u elektronegativnosti.

Slika 15. Razlika u kemijskom pomaku između signala istih atoma u ¹H spektru liganda L2 (označen crveno) i njegova srebrova(I) kompleksa K2 (označen plavo).

Pomak signala pripravljenih spojeva u ¹³C spektrima NMR također potvrđuje nastanak svih triju kompleksa, ali i mali utjecaj srebra(I) na ¹³C jezgre piridina nakon vezanja jer se signali odsjenjuju za 0,1–0,5 ppm. Razlika kemijskih pomaka signala jezgri ¹³C kompleksa i liganada pokazuje da se nakon vezanja ¹³C jezgre piridinskog prstena odsjenjuju (Slika 16). Kod spoja **K2** jezgre atoma C-2/6 se odsjenjuju za 0,3 ppm, jezgre atoma C-4 za 0,4 ppm, dok pomak jezgri atoma C-3/5 na koji je supstituiran atom joda ostaje isti. Vrlo slična razlika u kemijskim pomacima zabilježena je i kod kompleksa **K1** kod kojeg se jezgre atoma C-6 odsjenjuju za 0,5 ppm, jezgre atoma C-4 za 0,4 ppm, a pomak jezgri atoma C-3 iznosi 0,2 ppm. Najmanja razlika u kemijskim pomacima ¹³C jezgri kompleksa je zabilježena kod spoja **K3** i to 0,1 ppm za jezgre atoma C-3/5 i C-4.

Slika 16. Razlika u kemijskom pomaku između signala istih atoma u ¹³C APT spektru liganda L2 (označen plavo) i njegova srebrova(I) kompleksa K2 (označen crveno).

Najveća razlika u kemijskom pomaku nakon kompleksiranja zabilježena je kod signala atoma dušika piridinskog prstena (¹⁵N-py) u ¹H–¹⁵N HMBC spektru NMR što potvrđuje koordinaciju liganda na metalni ion upravo preko atoma dušika. Jezgra ¹⁵N-py se zasjenjuje za \approx 8 ppm kod **K1** i **K2**, odnosno za \approx 0,2 ppm kod **K3** (Slika 17). Malo zasjenjenje kod **K3** pripisuje se steričkoj smetnji dvaju atoma joda vezanih na položaje 2 i 6 piridinskog prstena.

Općenito mala razlika u kemijskim pomacima jezgri piridina nakon kompleksiranja kod pripravljenih kompleksa pripisuje se prirodi metalne soli, odnosno njenog aniona. Naime, nitratni ion, koji je u ovom slučaju jako koordinirajući protuion, prenosi naboj na srebrov(I) ion preklapanjem orbitala čime smanjuje pozitivni naboj srebrova(I) iona. Smanjenjem pozitivnog naboja srebra smanjuje se i elektron–odvlačeći utjecaj na atom dušika, a time i na sve jezgre unutar piridinskog prstena.

Slika 17. Usporedba spektara ¹H–¹⁵N HMBC liganda L2 (označen plavo) i kompleksa K2 (označen crveno).

5.2. Spektrometrija masa

U analizi spektrometrijom masa korištena je tehnika ionizacije raspršenim elektronima (ESI-MS) u pozitivnom i negativnom modu (ESI+-MS, ESI--MS). Budući da je ova tehnika ionizacije blaga, njeni rezultati se mogu usporediti s onima dobivenima spektroskopijom NMR. Svi ioni dobiveni ovom analizom prikazani su u *Rezultatima*, a slike spektra priložene su u *Dodatku*.

Nastajanje kompleksa u pozitivnom modu snimanja potvrđuje fragment $[AgL]^+$ koji je pri m/z 437,1 pronađen kod sva tri kompleksa, te molekulski ion $[AgL_2]^+$ koji je pronađen pri m/z 768,5 samo kod **K1** (Slika 18). Kao osnovni signal u spektrima dolazi fragment liganda $[L+H]^+$ pri m/z 331,8. U negativnom modu snimanja pronađeni su samo fragmenti nastali vezanjem srebra i nitratne skupine u množinskim omjerima 1 : 2 i 2 : 3.

Slika 18. ESI⁺-MS spektar spoja K2.

5.3. Spektroskopija IR zračenja

Infracrveni spektri istraživanih spojeva snimljeni su na instrumentu FT-IR Attenuated Total Reflection PerkinElmer UATR 2. Slike svih IR spektara s pripadajućim intenzitetima vrpci priložene su u *Dodatku*.

Kompleksiranje metalnog iona i liganda u IR spektru potvrđuje promjene oblika vrpci te pomak i nastanak novih vibracijskih vrpci u spektru kompleksa u odnosu na spektar njegova liganda. Usporedbom snimljenih spektara kompleksa K1-K3 i liganada L1-L3 opažamo da se vrpce jako malo pomiču iz čega zaključujemo da srebrov(I) ion ima vrlo slab utjecaj na raspodjelu elektronskih naboja u piridinskom prstenu. C-X (X = Cl, Br, I) vibracijske vrpce istezanja preklapaju se s vrpcama drugih skupina i nije ih u IR spektru jednostavno odrediti. Vrpce savijanja karakteristične za Ag-N veze kod istraživanih kompleksa apsorbiraju u području dalekog IR zračenja (< 400 cm⁻¹) pa ih zbog ograničenja korištenog instrumenta nije bilo moguće obuhvatiti ovom analizom.

Najdominantnija vrpca u spektru kompleksa posljedica je istezanja N–O skupine, v(NO), i pripada nitratnom ionu (NO₃⁻). Ta široka vrpca jakog intenziteta dolazi pri 1344 cm⁻¹ kod **K1**, 1316 cm⁻¹ kod **K2** (Slika 19) te pri 1343 cm⁻¹ kod **K3** i karakteristična je za nitratnu skupinu ionski vezanu na metalni ion. Pomak vrpci v(CN) vibracija (1532 cm⁻¹, 1404 cm⁻¹, 684 cm⁻¹) prema području viših valnih brojeva za 3–8 cm⁻¹ dokaz su kompleksiranja jer do pomaka dolazi uslijed povećanja dipolnog momenta jedinice C=N u heterocikličkom prstenu. Vrpce u području od 3050–3065 cm⁻¹ potječu od istezanja C–H veza piridinskog prstena.

Slika 19. IR spektar K2.

5.4. Rentgenska strukturna analiza

Rentgenska strukturna analiza napravljena je samo za kristal kompleksa **K1**. Kristali kompleksa **K2** i **K3** nisu bili pogodni za rentgensku strukturnu analizu na monokristalu.

Reakcijom srebrova(I) nitrata s L1 nastao je dinuklearni kompleks K1. Koordinacijski broj obaju atoma srebra u dimeru je 5+1 jer je šesta veza na granici sume van der Waalsovih radijusa atoma srebra i joda - I3 i I3A (Slika 20A). U koordinacijskoj sferi atoma srebra nalaze se dva dušikova atoma iz dvaju piridinskih prstenova, jedan kisikov atom iz monodentatno vezanog nitratnog iona te dva ili tri atoma joda od kojih su dva supstituirana na položajima 2 u piridinskim prstenima i sa srebrom ostvaruju intramolekulske veze, a treći atom joda, supstituiran na položaju 5 trećeg piridinskog prstena, ostvaruje intermolekulsku interakciju s centralnim metalnim ionom. Nitratni ion u molekuli, osim što je monodentatno vezan na atom srebra, djeluje i kao premosni ligand povezujući dimere dvjema interhalogenskim interakcijama (O···I–C) koje se ostvaruju između dvaju slobodnih atoma kisika nitratnog iona i nekoordiniranog atoma joda vezanog na položaju 5 u piridinskom prstenu susjedne molekule u polimerne lance koji tvore cik-cak formaciju (Slika 20B).

А

В

Slika 20. A) ORTEP prikaz molekulske strukture spoja **K1** s prikazanim oznakama atoma. B) Halogenskim interakcijama (označene plavo) između dimera stvara se supramolekulski polimerni lanac.

6. ZAKLJUČAK

Otapanjem srebrova(I) nitrata i dijod supstituiranog piridina u vodenoalkoholnom mediju u množinskom omjeru 1 : 2 pripravljena su tri nova kompleksna spoja:

[Ag(2,5-I2py) ₂ (NO ₃)]	bis(2,5-dijodpiridin)srebrov(I) nitrat	K1 ,
[Ag(3,5-I2py) ₂ (NO ₃)]	bis(3,5-dijodpiridin)srebrov(I) nitrat	K2,
[Ag(2,6-I2py) ₂ (NO ₃)]	bis(2,6-dijodpiridin)srebrov(I) nitrat	K3.

Nastanak novih spojeva (**K1–K3**) i njihovu strukturu potvrđuju razlike u kemijskim pomacima signala kompleksa i njihovih liganada u spektrima NMR (¹H, ¹³C APT, ¹H-¹⁵N HMBC). Najveća razlika u kemijskim pomacima zabilježena je kod signala piridinskog dušika (2–8 ppm) što je u skladu s očekivanim jer upravo njegov nepodijeljeni elektronski par i sudjeluje u stvaranju veze s ionom srebra(I).

U svim ESI⁺-MS spektrima pronađeni su fragmenti liganda sa srebrovim(I) ionom [AgL]⁺, dok je u spektru spoja **K1** pronađen i fragment $[AgL_2+H]^+$.

Usporedbom spektara dobivenih FT-IR spektroskopijom liganda i kompleksa uočeno je pomicanje određenih vrpci pripisanih CN istezanju, v(CN), u područje viših valnih brojeva što potvrđuje postojanje kompleksa u čvrstom stanju. Mali pomaci v(CC) vrpci u spektru pokazuju slab utjecaj srebrova(I) iona na piridinski prsten. Vrpce u području od 1316–1344 cm⁻¹ ukazuje na prisutnost ionski vezanog nitratnog iona.

Rentgenskom strukturnom analizom monokristala **K1** ustanovljeno je da je nastao dimerni kompleks s koordinacijskim brojem atoma srebra 5+1. Svaki ion srebra(I) je u molekuli koordiniran s dva dušikova atoma (Ag–N), s atomom kisika (Ag–O) te s dva ili tri atoma joda (Ag–I). S dva atoma joda ostvaruje intramolekulsku vezu, a s trećim intermolekulsku. Nitratni ion u **K1** ima ulogu monodentatno vezanog liganda (Ag–O), ali i premosnog jer se nastali dimeri upravo preko interhalogenskih veza (O–I···C) koju nekoordinirani atomi kisika nitratne skupine ostvaruju s atomima joda susjednog dimera povezuju u polimerne lance s cik-cak formom.

7. LITERATURA

- 1. https://www.britannica.com/science/silver (preuzeto 15. srpnja 2019.)
- http://www.chemistryexplained.com/elements/P-T/Silver.html (preuzeto 15. srpnja 2019.)
- 3. Filipović I, Lipanović S. Opća i anorganska kemija. Školska knjiga: Zagreb, 1996.
- 4. Clement JL, Jarrett PS. Antibacterial Silver. *Met-Based Drugs* 1994; **1**: 467–82.
- Roca S. Karakterizacija srebrovih(I) kompleksa s monohalogen i dihalogen derivatima piridina u otopini i čvrstom stanju. Doktorska disertacija, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu, 2017.
- 6. Volner Z, Batinić D, i sur. Opća medicinska mikrobiologija i imunologija. Školska knjiga Zagreb, 2005.
- 7. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. *Front Microbiol.* 2016; **7**: 1–17.
- 8. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in *Staphylococcus aureus* and *Escherichia coli*. *Appl Environ Microbiol*. 2008; **74**: 2171–2178.
- 9. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. *Int J Nanomedicine*. 2013; **8**:4303–4314.
- Hallmann EJ, Cunha FA, Castro BN, Maciel AM, Menezes EA, Fechine PB. Antifungal activity of silver nanoparticles obtained by green synthesis. *Rev Inst Med Trop Sao Paulo*. 2015; **57** :165–167.
- 11. Engelbrecht Z, Meijboom R, Cronjé M.J. The ability of silver(I) thiocyanate 4-methoxyphenyl phosphine to induce apoptotic cell death in esophageal cancer cells is correlated to mitochondrial perturbations. *Biometals* 2018; **31**: 189–202.
- Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E. An *In Vitro* Assessment of the Antibacterial Properties and Cytotoxicity of Nanoparticulate Silver Bone Cement. *Biomaterials* 2004; 25: 4383–4391.
- Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. *Int J Nanomedicine* 2018; 13: 3311–3327.
- 14. Klasen HJ. Historical review of the use of silver in the treatment of burns. I. Early uses. *Burns* 2000; **26**:117–130.
- 15. https://pubchem.ncbi.nlm.nih.gov/compound/Silversulfadiazine#section=Pharmaco logy (preuzeto 10. kolovoza 2019.)
- 16. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. *Free Radic Biol Med.* 1995; **18**:321–336.
- 17. Lansdown ABG. A Pharmacological and Toxicological Profile of Silver as an Antimicrobial Agent in Medical Device. *Adv. pharmacol. sci.* 2010; **2010**, 1–16.

- Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Silver, TP-90-24, 1990
- 19. Wadhera A, Fung M. Systemic argyria associated with ingestion of colloidal silver. *Dermatol. Online J.* 2005; **11**: 1–12.
- 20. http://www.silver-colloids.com/Pubs/blue-man.html (preuzeto 1. kolovoza 2019.)
- 21. Mariam J, Sivakami S, Kothari DC, Dongre PM. Bioactivity of Albumins Bound to Silver Nanoparticles. *Protein J* 2014; **33**: 258
- 22. https://hr.apicmo.com/you-need-to-about-pyridines/ (preuzeto 24. srpnja 2019.)
- 23. Gorzinsky Smith J. Organic chemistry. McGraw-Hill, New York, 2011.
- 24. https://ods.od.nih.gov/factsheets/Niacin-HealthProfessional/ (preuzeto 25. srpnja 2019.)
- 25. Vančik H. Temelji organske kemije. Tiva Tiskara, Varaždin, 2012.
- Kalinowska-Lis U, Felczak A, Chęcińska L, Szabłowska-Gadomska I, Patyna E, Małecki M, Lisowska K, Ochocki J. Antibacterial Activity and Cytotoxicity of Silver(I) Complexes of Pyridine and (Benz)Imidazole Derivatives. X-ray Crystal Structure of [Ag(2,6-di(CH₂OH)py)₂]NO₃. *Molecules* 2016; **21**:1–14.
- 27. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. The haologen bond. *Chem. Rev.* 2016; **116**: 2478-2601.
- 28. Gamulin S, Marušić M, Kovač Z. Patofiziologija. Medicinska naklada, Zagreb, 2005.
- 29. Metrangolo P, Resnati G. Type II halogen…halogen contacts are halogen bonds. *IUCrJ.* 2013; **1**: 5–7.
- Lisac K, Topić F, Arhangelskis M, Cepić S, Julien PA, Nickels CW, Morris AJ, Friščić T, Cinčić D. Halogen-bonded cocrystallization with phosphorus, arsenic and antimony acceptors. *Nat. Commun* 2019; **10**: 1-10.
- 31. Friebolin H. Basic One- and Two-Dimensional NMR Spectroscopy. Wiley, 2010.
- 32. Vikić-Topić D. Uvod u dvodimenzijsku FT spektroskopiju NMR, Institut Ruđer Bošković: Zagreb, 1989.
- 33. Novak P, Jednačak T. Strukturna analiza spojeva spektroskopskim metodama. Tiva Tiskara, Varaždin, 2014.
- Roca S, Vikić-Topić D, Plavec J, Šket P, Mihalić Z, Matković-Čalogović D, Popović Z. Structural Diversity of the Ag Coordination Sphere in Complexes of Silver (I) Nitrate with 3-Halopyridine. Characterization of the Complexes in Solution and in the Solid State. Polyhedron 2016; **109**: 166-175.

8. DODATAK

8.1. Slike spektara dobivene spektroskopijom NMR

- Spoj **K1** Bis(2,5–dijodpiridin)srebrov(I) nitrat
- Spoj **K2** Bis(3,5-dijodpiridin)srebrov(I) nitrat
- Spoj **K2** Bis(2,6-dijodpiridin)srebrov(I) nitrat

B Slika D1. A) ¹H i B) ¹³C spektar spoja K1.

Slika D2. $^{1}H^{-15}N$ HMBC spektar spoja K1.

Slika D3. A) ¹H i B) ¹³C spektri spoja K2.

Slika D4. ¹H-¹⁵N HMBC spektar spoja K2.

Slika D5. A) ¹H i B) ¹³C spektar spoja K3.

Slika D6. ¹H-¹⁵N HMBC spektar spoja K3.

Spoj L1 - 2,5-dijodr	piridin, 2,5–I ₂ py
Spoj L2 - 3,5-dijodr	piridin, 3,5–I ₂ py
Spoj L3 - 2,6–dijodp	oiridin, 2,6–I ₂ py

Slika D7. A) ¹H i B) ¹³C spektar spoja L1.

Slika D8. A) ¹H-¹H COSY, B) ¹H-¹³C HMQC, C) ¹H-¹³C HMBC i D) ¹H-¹⁵N HMBC spektri spoja L1.

Slika D9. A) ¹H spektar i B) ¹³C spektar L2.

Slika D10. A) ¹H-¹⁵N HMBC, B) ¹H⁻¹³C HMQC spektri spoja L2.

Slika D11. A) ¹H spektar i B) ¹³C spektar spoja L3.

Slika D12. A) 1 H- 15 N HMBC i B) 1 H- 13 C HMQC spektar spoja L3.

8.2. Slike spektara dobivene spektroskopijom IR zračenja

В

Slika D13. A) IR spektar spoja K1. B) IR spektar spoja K2.

В

Slika D14. A) IR spektar spoja K3. B) IR spektar spoja L1.

Slika D15. A) IR spektar spoja L2. B) IR spektar spoja L3.

Slika D17. A) ESI⁺-MS, B) ESI⁻-MS spektar spoja K2.

Slika D18. A) ESI⁺-MS, B) ESI⁻-MS spektar spoja K3.

Slika D19. A) ESI⁺-MS, B) ESI⁻-MS spektar spoja L1.

Slika D20. A) ESI⁺-MS, B) ESI⁻-MS spektar spoja **L2**.

Slika D21. A) ESI⁺-MS, B) ESI⁻-MS spektar spoja L2.

9. ŽIVOTOPIS

OSOBNE INFORMACIJE

Anamari Zorica

- የ Mihelići 1G, 51211, Matulji
- **(**+385) 976421063
- 🔀 <u>a.zorica64@gmail.com</u>

OBRAZOVANJE

2016. – danas Diplomski sveučilišni studij "Medicinska kemija"

Sveučilište u Rijeci - Odjel za biotehnologiju Radmile Matejčić 2, 51000 Rijeka, Hrvatska

2014. – 2016. Sveučilišna prvostupnica biotehnologije i istraživanja lijekova

Sveučilište u Rijeci - Odjel za biotehnologiju Radmile Matejčić 2, 51000 Rijeka, Hrvatska

- 2012. 2014. Preddiplomski studij Sanitarnog inženjerstva Sveučilište u Rijeci – Medicinski fakultet Ul. Braće Branchetta 20/1, 51000 Rijeka, Hrvatska
- 2009. 2013. Završeno gimnazijsko obrazovanje

Prva riječka hrvatska gimnazija u Rijeci Ul. Frana Kurelca 1, 51000, Rijeka

RADNO ISKUSTVO

3/2018. – 9/2019. Izrada diplomskog rada

Institut Ruđer Bošković, Centar za NMR, Bijenička cesta 54, 10000 Zagreb, Hrvatska Tema: *"Karakterizacija srebrovih (I) kompleksa s dijodo derivatima piridina spektroskopijom NMR"* Mentor: prof. dr. sc. Dražen Vikić-Topić, IRB i Odjel za biotehnologiju Sveučilišta u Rijeci Komentor rada: dr. sc. Sunčica Roca, IRB

01/2016.— 09/2019. Stručni suradnik Milsing d.o.o., Velika cesta 99, 10020 Zagreb, Hrvatska Mjerenje vitamina i minerala u ljekarni Prodaja

5/2015. — 6/2015. Stručna praksa

Jadran galenski laboratorij, JGL d.d. Svilno 20, 51000 Rijeka, Hrvatska

Sektor: Registracija

OSOBNE VJEŠTINE

Materinski jezik Hrvatski

Ostali jezici	RAZUMIJEVANJE		GOVOR		PISANJE
	Slušanje	Čitanje	Govorna interakcija	Govorna produkcija	
Engleski	C1	C1	B2	B2	B2

Stupnjevi: A1 i A2: Početnik - B1 i B2: Samostalni korisnik - C1 i C2: Iskusni korisnik

Komunikacijske vještine	 Dobre komunikacijske vještine stečene tijekom rada kao stručni suradnik Sklona timskom radu, ali i spremna za samostalno i odgovorno pristupanje rješavanju zadataka
Organizacijske / rukovoditeljske vještine 09/2016 - danas	 Član uprave rukometnog kluba "ŽRK Liburnije Matulji" Organizator međunarodnih turnira (višednevnih, jednodnevnih) Trener mlađe dobnih skupina djece

Digitalne vještine	SAMOPROCJENA				
	Obrada informacija	Komunikacija	Stvaranje sadržaja	Sigurnost	Rješavanje problema
	Iskusni korisnik	Iskusni korisnik	Samostalni korisnik	Samostalni korisnik	Samostalni korisnik

DODATNE INFORMACIJE

Stipendije

Korisnica stipendije Općine Matulji od 2017. do 2018. godine

Promocija znanosti i natjecanja	14. Festival znanosti, Otvoreni dani Odjela za biotehnologiju, 2016.		
	Sudjelovanje u organizaciji i provedbi Radionice za najmlađe		
	15. Festival znanosti, Otvoreni dani Odjela za biotehnologiju, 2017.		
	Sudjelovanje u organizaciji i provedbi Radionice za najmlađe		
Kongresi			
6. — 8. 10. 2017.	International Experimental Biology and Medicine Conference Odjel za biotehnologiju, Radmile Matejčić 2, 51000 Rijeka, Hrvatska Tema: <i>Biological clocks: mechanisms and application</i>		

Tema: Biological clocks: mechanisms and application

VOZAČKA DOZVOLA B kategorija