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Summary 

Bone homeostasis is secured by a combined action of bone forming osteoblasts and bone 

resorbing osteoclasts. When this balance is impaired, osteopenia is induced, which in time 

develops into osteoporosis. Antibody glycosylation influences osteoclast differentiation. It is 

known that immunoglobulin G (IgG) immune complexes positively stimulate osteoclast 

differentiation, resulting in subsequent inflammatory bone loss. In order to further investigate 

this process, a method was developed to isolate IgG from serum and to investigate the changes 

in IgG glycosylation patterns in osteoporotic rats treated with clinoptilolite, a natural zeolite 

with great detoxification and ion exchange properties. An experimental rat model was set up, 

and following groups of animals were analysed: healthy control, sham control, ovariectomized 

control (OVX), OVX supplemented with synthetic zeolite, OVX supplemented with natural 

clinoptilolite and OVX supplemented with micro activate clinoptilolite. Using affinity 

chromatography by use of monolithic supports with immobilized immunoglobulin binding 

ligands as a robust tool for isolation of immunoglobulins, IgG can be purified from rat sera. 

Compared to proteins A and G, recombinant protein L binds by far the largest number of 

isoforms of all immunoglobulins. For this reason, this ligand immobilized on a monolithic 

column has been used in this work. To procure a highly enriched IgG preparation, the fraction 

with proteins eluted from the column was analysed on a 1D polyacrylamide gel, after which in-

gel tryptic digestion of this protein was performed. The resulting peptides were successfully 

identified by MALDI-TOF/TOF mass spectrometry as parts of IgG heavy and light chains. In 

the next step, the IgG glycan structure was analysed by use of the same technique, after the 

glycans have been removed from the protein using deglycosylation enzyme PNGase F. Next to 

the IgG analysis, liver proteomes of healthy, sham operated and ovariectomized (OVX) rats 

treated with zeolites were fractionated according to hydrophobicity and each fraction was 

separately analysed by SDS PAGE. Finally, liver cryo slices were examined by Synchrotron 

radiation. Present results give us the evidence that the developed high throughput protocols for 

analysis of glycosylation of rat immunoglobulins, namely IgG, IgA and IgM, as well as the 

protocol for quantitative proteomic investigations of rat liver proteome, give us the fundament 

for further investigations by use of a larger number of experimental animals. We suggest that 

clinoptilolite positively affects bone status in osteoporotic rats as a consequence of signall ing 

changes in the body, particularly those initiated by the liver and the systemic spread of IgG 

molecules. 
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Prošireni sažetak  

Ciljevi 

Homeostaza kosti je posljedica kombiniranog djelovanja osteoblasta, stanica koje sudjeluju u 

biosintezi kosti, i stanica koje je razgrađuju, osteoklasta. Kada je ova ravnoteža narušena, dolazi 

do osteopenije, koja se s vremenom razvije u osteoporozu. Poznato je da glikozilacija antitije la 

utječe na diferencijaciju osteoklasta. Imunološki kompleksi imunoglobulina G (IgG) 

stimuliraju diferencijaciju osteoklasta, rezultirajući upalnim gubitkom koštane mase. Cilj ovog 

doktorskog rada je istražiti potencijalni terapeutski učinak prirodnog zeolita klinoptilolita, koji 

zbog svog ionsko izmjenjivačkog svojstva ima mnoge terapeutske aplikacije. Pokusi su 

provedeni na osteoporotičnom modelu štakora. Slijedeći postavljeni zadatak, imunoglobulin G 

je izoliran iz seruma zdravih štakora, osteoporotičnih štakora, i osteoporotičnih štakora 

tretiranih klinoptilolitom, te deglikozilacija izoliranih protutijela i analiza i usporedba njihovih 

IgG glikozilacijskih profila. Usporedno, kvantitativno je analiziran proteom jetre istih štakora 

kako bi se uvidjele moguće razlike u ekspresiji pojedinih proteina ili grupe proteina. 

Postupci 

Imunoglobulin G je izoliran iz uzoraka seruma sljedećih grupa pokusnih životinja: zdrava 

kontrola, sham kontrola, ovariektomizirana (OVX) kontrola, OVX + tretirani sintetsk im 

zeolitom, OVX + tretirani jednostruko aktiviranim klinoptilolitom i OVX + tretirani PMA 

dvostruko aktiviranim klinoptilolitom. Nadalje, analizirana je i glikanska struktura IgG na 

MALDI-TOF/TOF masenom spektrometru, nakon što su glikani odvojeni od proteina koristeći 

enzim PNGaza F koji specifično cijepa glikanske lance. Pored analize imunoglobulina G, 

istražen je i proteom jetre istih štakora. Jetra je homogenizirana, a proteini su frakcionirani po 

hidrofobnosti koriteći odgovarajući komercijalni kit za ekstrakciju. Svaka je frakcija posebno 

analizirana na SDS PAGE gelu. 

Rezultati 

Prvo je razvijena metoda za izolaciju i separaciju IgA, IgM i IgG iz humanog seruma koristeći 

afinitetnu kromatografiju. Imunoglobulin G je izoliran iz uzoraka seruma štakora koristeći 

protein L imobiliziran na monolitni disk, a eluat je nanešen na poliakrilamidni gel.  Nakon 

enzimske digestije proteina separiranih na SDS PAGE, MALDI-TOF/TOF masenom 

spektrometrijom uspješno je identificiran štakorski IgG. Glikanska struktura IgGa analizirana 

je masenom spektromterijom, s posebnim naglaskom na detekciju sijalinske kiseline. Proteom 
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jetre također je analiziran, moguće promjene u ekspresiji proteina na 1D poliakrilamidnom gelu 

su analizirane koristeći raspoloživu metodu.  

Zaključci 

Uspješno razvijeni visokoprotočni protokoli za analizu glikozilacije štakorskih imunoglobulina, 

posebice imunoglobulina G, kao i protokoli za kvantitativna proteomska istraživanja štakorske 

jetre, služe kao podloga za daljnja istraživanja koristeći veći broj eksperimentalnih životinja . 

Predlažemo da klinoptilolit pozitivno utječe na gustoću kosti osteoporotičnih štakora kao 

posljedica promjena u staničnoj signalizaciji, posebice onih započetih u jetri, te posljedič nog 

sistemskog širenja IgG molekula. 

 

Ključne riječi 

Imunoglobulin G, osteoporoza, glikozilacija, proteom jetre, monolit, afinitetna 

kromatografija, masena spektrometrija 
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1. INTRODUCTION 
 

 

Osteoporosis is a metabolic disease characterized by a reduction in bone mass and density. In 

2010, 27.5 million people in Europe suffered from osteoporosis [1]. It is manifested through an 

imbalance between bone adsorption and resorption. Bone is a live tissue that is being 

regenerated throughout our lives and bone homeostasis is maintained by the right balance 

between osteoblasts, bone forming cells, and osteoclasts, bone resorbing cells (Figure 1). 

Activation of these cells and their interconnected interplay is well studied and is regulated by 

various molecular signals. The three main mechanisms responsible for the development of 

osteoporosis are inadequate bone mass growth during development, excessive bone resorption 

and inadequate bone formation. Moreover, hormonal factors strongly influence the speed of 

bone resorption; lack of oestrogen significantly enhances bone resorption, restricting the 

formation of new bone tissue at the same time [2].              

 

 

Figure 1. Bone remodelling [3]. 

 

Osteoclasts, multinucleated giant bone resorbing cells, are derived from a 

monocyte/macrophage lineage, and they firstly develop into mononucleated osteoclast 

precursor cells. Fusion of these cells into an immature osteoclast or a polykaryon requires three 

stimulatory signals coming from a growth factor, a macrophage colony-stimulating factor (M-

CSF) and the receptor activator of nuclear factor κB ligand (RANKL), a tumour necrosis factor 

1.1 Osteoporosis  
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produced by osteoblasts [4]. RANKL induces expression of transcription factor NFAT2 which 

is required for the development of functional osteoclasts by expressing Siglec15, a lectin which 

recognizes α (2,6)-linked sialic acid, contributing to cell fusion and bone resorption in 

osteoclasts [5]. The dependency of osteoclastogenesis on osteoblasts, cells of the mesenchymal 

lineage, is evident in the interplay of RANKL and its receptor RANK, both membrane bound 

proteins, and osteoprotegerin (OPG), a secreted glycoprotein (Figure 2). Osteoblasts secrete 

both RANKL and OPG, and OPG acts as a decoy receptor for RANKL, thus inhibit ing 

osteoclastogenesis by competitively binding to RANKL and not allowing it to bind to RANK 

receptors on osteoclasts [6].  

 

 

 

 

Figure 2. The molecular triad OPG/RANK/RANKL [7]. 
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Osteoblasts are derived from the mesenchymal lineage and many factors are required for their 

differentiation, including transcription factors (e.g. runt-related transcription factor-2 and 

osterix) and components of the canonical Wnt signalling pathway [8]. Mature osteoblasts 

produce and secrete proteins that constitute the bone matrix, like type I collagen, osteonectin 

and osteocalcin [9]. In addition, they promote the deposition of hydroxyapatite by regulat ing 

local concentrations of calcium and phosphate, which makes them essential for the 

mineralization of the osteoid matrix [9]. When, over time, osteoblasts become entrapped in their 

own bone matrix they are called osteocytes, mature bone cells, which express different genes 

that contribute to bone turnover and the maintenance of bone mineral homeostasis.  

 

 

 

Post translational modifications (PTM) have a crucial impact on the biological function and 

structure of proteins, altering their stability, activity, localization, and even protein-protein 

interactions. A direct link in a signalling network between upstream kinases and downstream 

transcription factors is established by phosphorylation, while after glycosylation, covalently 

bound sugar moieties provide important recognition epitopes that influence regulatory or 

effector functions of the protein. Glycosylation is the most complex PTM because (i) there is a 

large number of enzymatic steps involved in forming a glycan and (ii) it introduces by far the 

largest number of changes into the proteome, compared to other PTMs. Biological functions of 

protein glycosylation are numerous; from Fc receptor and pathogen binding, to interaction with 

complement and resistance to proteases. There are several types of glycosylation in mammals,  

but N- and O-linked glycosylation are the most common ones. N-linked refers to the glycan 

attached to the asparagine residue, while O-linked glycosylation introduces the glycan to a 

hydroxylated amino acid, serine or threonine. The major secretory products of the adaptive 

immune system, immunoglobulins (Igs), are glycosylated, and both the Fc and the Fab 

fragments may contain glycans. The sugar moieties attached to immunoglobulins are quite large 

(around 2 kDa). Since immunoglobulin G accounts for more than 70% of serum Igs, much more 

is known about this Ig isotype compared to the A, D, M or E classes. The role of IgG 

glycosylation has been extensively studied in cancer therapy and autoimmunity, linking disease 

severity to the changes in the composition and location of glycans [10,11,12]. Although most 

research has been focused on IgG, the link between glycosylation and pathology has been 

established in other Ig classes as well. Immunoglobulin A (IgA) glycosylation effects have been 

affirmed in the scope of allergies and IgA nephropathy [13,14] while sialylation influences the 

1.2 IgG glycosylation 
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immunomodulatory effects of immunoglobulin M (IgM) on T cells [15]. While glycosylat ion, 

as the most common PTM in antibodies, has been a topic of many investigations, rarely studied 

modifications, such as methionine oxidation, deamidation and disulphide modifications, can all 

cause potentially immunogenic changes in immunoglobulin structure [16].   

 

Immunoglobulin G is a protein which plays a major role in the humoral immune response 

regulating the activity of immune cells by binding to the Fcγ receptor. It is known that increased 

bone resorption is connected to the immune system activation in autoimmune or inflammatory 

diseases. IgG binding to FcγRs sends a signal through FcγR, activating ITAM (immunorecep tor 

tyrosine-based activation motif) signalization, which is an essential co-stimulatory signal for 

osteoclast differentiation [17]. Considering that there are positive and negative receptors, the 

effect of IgG varies between different receptor subtypes. Moreover, monomeric and polymeric 

IgG forms have different effects, making IgG-FcyR signalization even more complicated [17].  

 

N-glycan attached to the heavy chain of the Fc moiety of IgG influences its stability and effector 

functions. The Fab fragment can be glycosylated as well, and 15-20% of IgG has an N-glycan 

present in its light chain [18]. The N-linked glycan attached to aspargin-297 in the Fc region of 

IgG is of crucial importance for IgG- FcyR binding [19] (Figure 3). Fc receptors (FcR) 

participate in immunity, and their ligands are antibodies expressed by infected cells or 

pathogens. FcRs are expressed by B lymphocites, NK cells, macrophages, neutrophils and other 

immunological cells, as well as osteoclast precursors [20]. FcRs that bind immunoglobulin G 

(IgG) are called Fc gamma receptors, FcγR. There are several kinds of Fcγ receptors, and they 

differ in the antibody binding affinity because of their distinct molecular structure: FcγRI 

(CD64), FcγRIIA (CD32), FcγRIIB (CD32), FcγRIIIA (CD16a) and FcγRIIIB (CD16b) [19]. 

The majority of these receptors act stimulatively, while FcyRIIB is the only one that acts 

inhibitory. Osteoclasts are expressing Fcγ receptors in quantities similar to those of 

macrophages and dendritic cells, indicating that immune complexes and immunoglobulin G 

(IgG) influence their differentiation/activity. 

 

Changes in IgG glycosylation result in changed Fc conformation and influence the affinity of 

IgG binding to the FcyR. An addition of terminal sialic acid residues in the IgG glycan has an 

anti-inflammatory effect, while the lack of it increases the affinity of IgG binding to the 

receptor, producing a pro-inflammatory response [21]. Negishi-Koga et al. have demonstrated 

that desialylated, but not sialylated, immune complexes enhance osteoclastogenesis in vitro and 
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in vivo [22]. In vitro osteoclast stimulation with desialylated immune IgG complexes resulted 

in enhanced osteoclastogenesis with an increase in the number of osteoclasts. On the other hand, 

stimulation with sialylated IgG complexes did not induce a change in osteoclastogenesis. Mice 

treated with a sialic acid precursor show increased IgG sialylation and are less prone to 

inflammatory bone loss, further confirming the protective role of sialylated IgG in the 

autoimmune loss of bone mas [22]. Furthermore, pathogenic antibodies like ACPA (antibodies 

against citrullinated proteins) contain less sialic acid in the Fc glycan compared to bodily IgG 

antibodies, while positively influencing osteoclastogenesis [23]. Therefore, IgG sialyla t ion 

could be of great importance for the interaction between osteoclasts and the immune system. 

 

 

 

Figure 3. IgG sialylation is the key checkpoint that determines the engagement of pro- or anti-

inflammatory Fcƴ receptors.  

 

 

1.3 Zeolites 
 

Zeolites are hydrated microporous aluminosilicate minerals of volcanic origin. They are crystals 

with a well-defined tetrahedral structure formed by SiO4 and AlO4 molecules linked through 

common oxygen atoms (see Figure 4.) [24]. The ratio between silicon and aluminium varies 

from 4.0 to 5.3 with a high thermal stability (600–800 ◦C) [25].  Zeolites’ general formula is 

(Mn+)x/n[(AlO2)x(SiO2)y·mH2O, where “M” stands for a positively charged metal ion, e.g. 

sodium, potassium, magnesium, calcium [26]. Considering their overall negative charge, they 

are excellent inorganic cation exchangers, having a stronger selectivity compared to silica and 

activated charcoal [24]. Zeolites are often called molecular sieves since they can exchange one 

ionic metal in the crystal grid with another, with pore size modulating catalytic properties of 
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the mineral. There are more than 40 natural kinds of zeolites, and over 150 have been 

synthetized [27]. Scanning electron microscope pictures of both natural and synthetic zeolite 

can be seen in Figure 5.  

 

Figure 4. Structural formula of clinoptilolite. 

 

 

        

Figure 5. Scanning electron microscope (JEOL) pictures of (A) synthetic zeolite A (19.000 x zoom) 

and (B) natural clinoptilolite (16.000 x zoom). 

 

Clinoptilolite is the most prevalent zeolite in nature. Its therapeutic applications are numerous; 

it is used for maintaining the body pH value, reducing free radicals, neutralizing or elimina ting 

toxins and heavy metals, improving tissue oxygenations, etc. [28]. It is important to note that 

clinoptilolite could be used for treatment of various pathologies, including viral infections [29], 

cancer therapy [30], or as an adjuvant in antibiotics delivery [31,32]. Once ingested, it is not 

absorbed in the circulation, but excreted. The exact clinoptilolite’s mechanism of action is still 

unknown. The majority of the medicinal clinoptilolite is milled by mechanical or 

tribomechanical processing to a size smaller than 10 microns, in order to increases its surface 

area [33,34], which in turn increases its bioequivalence.  
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Clinoptilolite is a great source of silicon in the form of orthosilicic acid which protects the body 

from heavy metals [35]. Lack of silicon in the body leads to a bone defect and there is a positive 

correlation between an increased silicon intake and mineral hip bone density in premenopausa l 

women [36]. Similar phenomena was observed in female rats [37]. Aluminosilicates are known 

to have biological activity, and it was also reported that silica, silicates and aluminosilicates act 

as non-specific immunostimulators by binding to a fraction of the T cell population, inducing 

their cell death [38]. Moreover, Beck et al. showed that silica nanoparticles mediate potent 

inhibitory effects on osteoclasts and stimulatory effects on osteoblasts in vitro [39]. 

Next to natural zeolites, synthetic zeolite A was shown to positively influence the prolifera t ion 

and differentiation of human osteoblast like cells in vitro [40]. Our preliminary results show an 

increase in bone density and mineral content in osteoporotic rats treated with clinoptilolite. 

Considering the clear interconnection between bones, immune system and clinoptilolite, we 

decided to isolate immunoglobulin G from sera of osteoporotic rats in order to analyse its 

glycosylation, particularly sialylation, and contribute to our understanding of the mechanisms 

of osteoporosis. 

 

 

In order to study immunoglobulin structure and function, they first need to be isolated from 

biological samples. Many commercially available kits for targeted Ig isolation exist, using 

different specific proteins as purification ligands. However, they can be expensive and do not 

allow for simultaneous purification of different Ig classes. Chromatographic methods, on the 

other hand, provide a great platform for concurrent protein isolation, as was shown by Breen et 

al. who successfully isolated both IgG and IgM using protein A affinity chromatography 

followed by separation on a strong anion-exchange column [41].  High-throughput (HTP) 

fractionation of human plasma using the same approach allowed for the isolation of IgM from 

a large number of samples [42]. Generally speaking, affinity chromatography refers to the 

separation of biomolecules based on their affinity to the molecule immobilized on the 

chromatographic media. Substances with no or low affinity for the column will have a short 

retention time and will elute soon after sample application, while those with high affinity are 

bound so strongly to the column that an eluent has to be added in order to elute them. Elution 

buffer is in most cases a highly acidic one (pH < 3), and drastic drop in pH weakens protein-

protein interactions and leads to an almost immediate dissociation between the ligand and the 

1.4 Affinity monolith chromatography 
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analyte. A standard run consist of five steps: (i) the column is equilibrated with the same buffer 

in which the sample is diluted, allowing for protein-protein interactions to occur in the 

chromatographic step, (ii) sample is applied in the same buffer and target proteins bind to the 

ligand; (iii) unbound and weakly bound material is washed away using a buffer with a high salt 

concentration; (iv) bound proteins are eluted in an elution buffer at a very low pH; (v) the 

column is re-equilibrated with equilibration buffer to return the pH to a neutral value so that the 

half-life of ligands immobilized onto the column is prolonged. A typical affinity chromatogra m 

is showed in Figure 6.  

 

 

Figure 6. A typical affinity chromatography scheme.  

 

Routine chromatographic protocols use particle-based supports, such as inert silica or agarose 

beads packed into a column. A very efficient alternative are polymethacrylate monolithic 

supports, which enable rapid and efficient analyses of large biomolecules and nanopartic les 

[43] (Table 1.) At the end of the 80’s, polymer-based monolithic supports were developed by 

two groups [58-60], firstly called “macroporous membranes” [47] or “continuous polymer 

beds” [48]. They are porous structures that contain channels and that bear chemically active 

groups on their surface. In the next step, these active groups can be chemically modified with 

different ligands. Firstly, successful use of monoliths for fast chromatographic separations of 
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standard proteins was demonstrated [47,48]. Shortly after the first experimental production of 

glycidyl-polymethacrylate with ion-exchange ligands, complex biological mixtures were being 

separated, such as blood plasma and plasma membrane proteins [49], and other small molecules 

and proteins as potential affinity ligands were immobilized to supports [50]. During the 

following years, glycidyl-polymethacrylate monoliths became broadly used [51,52]. Monoliths 

are now widely used for both analytical and preparative separation of biopolymers [49,53,54], 

as well as for the immobilization of enzymes and fast, in-flow enzymatic conversions [50,54]. 

It was also demonstrated that miniaturized monolithic columns with immobilized antibodies 

could be applied for fast isolation of therapeutic proteins by use of affinity chromatography 

[53,54], as well as for fast detection of potential (glyco)protein biomarkers. The early 

experiments with the conversion of low and high-molecular weight substrates on monoliths 

with immobilized enzymes yielded, for the first time, very surprising results, with the 

conversion rate being faster with a faster flow rate [48,55]. Later investigations confirmed that 

the material transport in monoliths that contain flow-through channels is based on convection 

and consequently, it is almost flow-rate independent [52,56].  The low-pressure drop during the 

separation process on monoliths and their compact structure enabled so-called “conjoint 

chromatography” by combining columns with different ligands. Such miniaturized units 

enabled multidimensional separations, such as a combination of affinity chromatography (that 

enabled removal of some proteins with high abundance, e.g. serum albumin) with adsorption 

chromatography (e.g. ion-exchange), that yielded further sample fractionation. 

Affinity chromatography on monolithic supports is termed affinity monolith chromatography 

(AMC). Today, monoliths are usually composed of a polymeric organic, silica, agarose or other 

substrate that can be chemically modified to bind different ligands [57]. They can be prepared 

in various formats, from large and middle-sized, columns and discs, to capillaries and 

microchips [58]. Ligands immobilized to particle-based stationary phases have also been 

employed in AMC (e.g. antibodies, lectins, enzymes, metal ions, dyes). Consequently, AMC 

can be used for immuno-affinity chromatography, immobilized metal affinity chromatography, 

dye-ligand affinity chromatography, etc [59]. A monolith does not contain pores but a multitude 

of longitudinal channels that flow throughout the column, allowing for a large surface area 

available for reactivity. The continuous bed support displays a higher external porosity 

compared to chromatographic beads, resulting in increased permeability and lower back 

pressure at a given flow rate. Furthermore, rapid mass transfer in monoliths is based on 

convention rather than diffusion and flow rate does not influence protein binding, making them 



 

10 
 

ideal chromatographic supports when short analysis time is needed, for example HTP drug 

screening [60]. Affinity monolith chromatography has been used for fast quantification of both 

IgG and IgM [61,62], as well as for the separation of IgG subclasses [63]. Pucic et al. developed 

a 96 well plate consisting of a monolithic stationary phase with immobilized protein G which 

enabled HTP isolation and analysis of human IgG of more than 2000 samples in only 12 hours 

[64].    

 

Table 1. Comparison of monoliths and particle-based supports 

 

 Monolith “Beads” 

Large surface area  
   

Increased permeability 
 

 

Lower back pressure 
 

 

Unaffected by flow rate 
 

 

Physically stable 
 

 

 

 

The most common ligands for affinity chromatography are protein G and protein A, isolated 

from Gram-positive bacteria Staphylococcus aureus and Streptococcus sp, respectively [65,66]. 

Both of these ligands interact with immunoglobulins through the Fc fragment. Opposed to that, 

protein L, a membrane protein from Peptostreptococcus magnus, binds with high affinity to the 

Fab fragment [67] (Figure 7). Specifically, protein L interacts with kappa variable light chain 

regions of immunoglobulins, which allow for Fab fragment and single domain antibody 

isolation. It has to be noted that only around 35% of all human Igs contain kappa light chains, 

irrespective of their class. However, the percentage of rat Igs containing kappa light chains is a 

higher than 90%.  
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Figure 7. Binding sites of protein A, G and L on immunoglobulin G. The star represents N-glycan 

binding arginine residue.  
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2. RESEARCH GOALS AND HYPOTHESIS 
 

The main goal of this research was to examine the effects of clinoptilolite on IgG glycosyla t ion 

and liver proteome composition in the osteoporotic rat model. The rationale behind this goal is 

in already established link between immunoglobulin sialylation and various pathological states. 

Specifically, we: 

1. Developed protocols for a fast, reliable and high-throughput method for IgG isolation 

from serum, using monolithic columns with immobilized protein L for the isolation of 

immunoglobulin G from serum of healthy rats, osteoporotic rats and osteoporotic rats 

supplemented with clinoptilolite. 

2. Analysed glycosylation profiles of isolated IgGs. 

3. As the main mechanisms of clinoptilolite action is hypothesized to be detoxification in 

the digestive system, we analysed liver proteomes of healthy rats, osteoporotic rats and 

osteoporotic rats treated with clinoptilolite.  

The results of this thesis are expected to provide novel evidence on clinoptilolite mechanisms 

of action in a medical device regimen particularly through changes of liver activities as well as 

through induction of specific glycosylation changes in IgG. We hypothesize that clinoptilo lite 

positively affects the bone status in osteoporotic rats as a consequence of signalling changes in 

the body, particularly those initiated by the liver and the systemic spread of IgG molecules with 

higher numbers of sialic acid residues in their glycans.  
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3. MATERIALS AND METHODS 
 

 

Wistar female rats from the Institute of Medical Research and Occupational Health Care in 

Zagreb were used for these experiments. Animals were bred and maintained according to the 

Guide for the Care and Use of Laboratory animals: Eight Edition (National Academic Press, 

2010). All experimental protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC). Animals were maintained under pathogen-free conditions in a steady-

state micro environment. They were fed with MucedolaRF21 (Mucedola, Settimo Milanese, 

Italy) food ab libitum, with free access to water and altering 12 h light and dark cycles. In order 

to induce osteopenia, at six months’ time, all animals underwent bilateral ovariectomy (OVX) 

under general anaesthesia, except for one group which was sham operated, meaning that the 

ovaries were exteriorized and repositioned intact. Administration of tested compounds started 

after post-operative recovery. Sixty rats were randomly divided into six groups of ten animals, 

as follows in Table 2.  

 

Table 2. Animal groups and treatment 

Group Description Treatment 

0 Healthy control 3 mL H20 

1 Sham operated 3 mL H20 

2 OVX control 3 mL H20 

3 OVX + zeolite A 3 mL suspension of H20 and zeolite A                  

(10 gr/kg of b.m./day) 

4 OVX + raw clinoptilolite 3 mL suspension of H20 and raw clinoptilo l ite 

(10 gr/kg of b.m./day) 

5 OVX + PMA clinoptilolite 3 mL suspension of H20 and PMA clinoptilo l ite 

(10 gr/kg of b.m./day) 

 

 

3.1 Experimental animals 
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Clinoptilolite was provided by Panaceo International Active Mineral Production Gmbh 

(Villach-Gödersdorf, Austria). Synthetic zeolite A was purchased from A. + E. Fischer-Chemie 

(Karlsruhe, Germany). Natural clinoptilolite was micronized by tribomechanical microniza t ion 

and PMA (Panaceo Micro Activation) clinoptilolite was produced by technology for double 

activation adopted from WO00/65486.  

 

At experiment termination, animals were sacrificed by exsanguination under general 

anaesthesia. Blood was collected, centrifuged and immediately stored as serum at – 80 ºC.  

Liver tissue was harvested, dipped into liquid nitrogen and stored at – 80 ºC. 

 

For connection to the high performance liquid chromatography (HPLC) system, a dedicated 

plastic housing (BIA Separations, Ajdovščina, Slovenia) was used. All chemicals were of 

analytical grade (Sigma-Aldrich, St. Louis, MO, USA). All buffers were prepared with ultra-

pure water (Ωm≤18 S/cm) and filtered using a 0.22 m nitrocellulose filter (Millipore, Biller ica, 

MA, USA). Convective interactive media (CIM) r-protein G monolithic disc (0.34 mL) and 

CIMac r-protein L monolithic column (0.1mL) were purchased from BIA Separations. These 

monoliths have a poly (glycidyl methacrylate-co-ethylene dimethacrylate) backbone with 

immobilized recombinant protein A, G or L produced in E.coli. Bicinchoninic acid assay 

(Thermo Fisher Scientific, Waltham, MA, USA) was used for protein quantification, with 

bovine serum albumin (BSA) as a standard. 

 

 

Affinity chromatography was performed at room temperature using an HPLC (Knauer, Berlin, 

Germany) system comprising of a quaternary pump, a solvent degasser, a conductivity/pH 

monitor, a UV-Vis detector with a 190 to 750 nm wavelength range and a 2 mL sample loop. 

Operation parameters were fixed and controlled through a computer using ClarityChrom 

Preparative software version 3.0.5.505 (Knauer).               

                                                                             

3.2 Tested substances 

3.3 Tissue sampling  

3.4 Materials and chemicals 

3.5 Instrumentation  
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Mass spectrometric measurements were performed on UltraflexExtreme MALDI TOF TOF 

instrument (Bruker, Bremen, Germany). The instrument was equipped with a nitrogen laser 

operating at a wavelength of 337 nm with a 2 kHz frequency in TOF/TOF mode. 

 

 

 

Prior to sample application on a monolithic support, all samples were diluted 10 fold in 

equilibration buffer, centrifuged and filtered through a 0.22m filter. Protein G disc was 

employed using three mobile phases (Buffer A: 0.2M Tris pH 7.2, for equilibration of the 

column; Buffer B: 0.5M NaCl/50mM Tris-HCl, pH 7.2, for washing of impurities before 

protein elution; Buffer C: 0.1M glycine-HCl, pH 2, for protein elution). The first two mobile 

phases were identical when chromatography on protein L column was performed, while the 

preferred elution buffer was 0.5M acetic acid, without pH adjustment. Elution was performed 

under isocratic conditions. The flow rate of the mobile phase was 1 mL/min and the column 

temperature was 25°C. The injection volume of the diluted human serum sample was 2 mL. 

The eluted proteins were monitored at an absorbance of 280 nm and were rapidly neutralized 

by addition of a concentrated buffer of 1 M Tris to avoid denaturation. Finally, the system was 

re-equilibrated with Buffer A.  

 

 

 

Liver tissue was lysed and proteins were fractionated using the Subcellular Protein 

Fractionation Kit for Tissues (Thermo Scientific, Waltham, MA, USA) according to the 

manufacturer’s instructions. 100 mg of tissue was used, and tissues were grinded using a 

Dounce homogenizer.  

 

 

 

The composition and purity of eluted protein fractions were tested by vertical SDS-PAGE (Mini 

Protean Tetracell system, Bio-Rad), using a 12% resolving gel and a 4% stacking gel under 

reducing conditions. Samples were boiled at 95 °C for 5 minutes. Proteins were separated in 

the gel for 30min at 200 V. Protein staining was performed with Coommassie Brilliant Blue R-

250 (Sigma-Aldrich). Roti-Mark TRICOLOR marker (Carl Roth, Karlsruhe, Germany) was 

used as a gel standard.  

3.6 Affinity monolith chromatography 

3.7 Protein fractionation 

3.8 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
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Proteins bands of interest were excised from the gel and cut into 1x1 mm pieces. 250 µl of 100 

mM ammonium bicarbonate (ABC), pH 7.8, was added to cover the gel pieces and incubated 

at RT for 30 minutes, with shaking. Supernatant was removed, and 500 µl of acetonitrile was 

added and incubated under the same conditions. Again, supernatant was removed, and 250 µl 

of 100 mM ABC was added and incubated for 30 minutes. To reduce the sample, DTT was 

used (10 mM DTT, 56 °C, 1 h), and to alkylate it, iodoacetamide (50 mM IAA, RT, 1 h). 

Samples were washed with 250 µl of 100 mM NaHCO3 for 30 minutes, followed by 250 µl of 

acetonitrile for 30 minutes. This step was repeated twice. Samples were then dried in a vacuum 

concentrator (Eppendorf, Hamburg, Germany). Once completely dried, 5 µl of PNGase F in 20 

mM NaHCO3 per sample was added and incubated for 60 minutes at 37 °C. 20 mM NaHCO3 

was finally added to cover the gel slices and samples were left to incubate O/N at 37 °C. The 

next day, supernatant was removed, gel pieces were covered with 200 µl of ultra-pure water 

and each sample was sonified for 30 minutes. The supernatant was stored, and the sonifying 

step was repeated. Then, gel pieces were covered with 200 µl of 50 % acetonitrile (ACN) and 

sonified twice, collecting the sup each time. Finally, 100 % ACN was used for sonificat ion, 

twice. The resulting large volume of collected supernatants amounted to 1200 µl and was dried 

fully in a vacuum concentrator. When dried, samples were dissolved in 4 µl of pure water, and 

glycan carboxyethylation was performed. Glycan derivatization leads to sialic acid stabiliza t ion 

when performing MS measurements. 20 µl of ethylation reagent was added to each sample 

(0.25 M EDC, 0.25 M HOBt, in ethanol) and the reaction was incubated in dark at 37 °C for 

one hour. 20 µl of ice cold ACN was added to the mixture and incubated at -20 °C for 15 

minutes. Cotton HILIC was performed by carefully pipetting 20 µl of solution, thoroughly 

wetting the cotton, in following order: ultrapure water (3x), 85% ACN (3x), sample (20x), 85% 

ACN / 1% trifluoroacetic acid (TFA) (3x), 85% ACN (3x). Glycans were eluted in 20 µl 

ultrapure water and spotted on a MALDI target plate. For glycan analysis, GlycoMod online 

tool was used.  

 

 

 

 

 

 

3.9 In-gel PNGase F digest, glycan derivatization and glycan enrichment 
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Protein bands of interest were excised from the gel, cut into 1x1 mm pieces, and each band was 

de-stained using acetonitrile and 100mM ammonium bicarbonate. Proteins were reduced (with 

20mM DTT, 56 °C, 30 minutes) and alkylated (by use of 50mM iodoacetamide, at room 

temperature for 30 minutes in dark). After washing and further de-staining with acetonitrile and 

100mM ABC, samples were dried in a vacuum concentrator (Eppendorf). In-gel tryptic 

digestion was performed at 4°C for 40 minutes in 50mM ABC containing 400 ng/μL trypsin 

(sequencing grade, Promega, Madison, WI, USA). Fresh 50mM ABC was then added to the 

sample, and it was incubated over night at 37 °C. The resulting peptides were re-dissolved in 

0.1% TFA and purified via Zip Tip (Millipore, MA, USA) according to the manufacture r’s 

instructions.  

 

 

 

Digested peptides were spotted on a MALDI anchor chip plate (Bruker). Sample positions on 

anchor chip target plates contain "anchors"; hydrophilic patches surrounded by a hydrophobic 

ring. The "anchor" localizes droplets at the sample position and the hydrophobic ring prevents 

sample spreading and concentrates the sample into a spot 800 µm in diameter. The 

concentration effect provides enhanced sensitivity when analyzing dilute samples. Two 

different matrices were used for spotting peptides and carbohydrates. α- Cyano- 4- 

hydroxycinnamic acid (HCCA) enables highly sensitive MALDI- TOF- MS measurement of 

peptides and proteins from 0.7 to 20 kDa. 2,5-Dihydroxybenzoic acid (2,5-DHB), on the other 

hand, is used for analysis of a wide variety of molecules, including carbohydrates and 

glycoproteins. When spotting peptides, sample was dissolved in 0.1 % TFA. Matrix solution 

was prepared by dissolving 1.4 mg/mL HCCA in a solvent mixture containing 85% acetonitr ile, 

15% water and 0.1% TFA. 1 µL of the sample solution was deposited onto each MALDI target 

plate position and allow to dry, followed by 1 µL of the matrix solution. For glycans, samples 

were dissolved in water. Matrix solution was prepared by dissolving 10 mg/mL 2,5-DHB in 

30:70 [v/v] acetonitrile : 0.1% TFA : 1 mM NaCl. 0.5 µL of the matrix solution was spotted 

onto the plate. When dried, 0.5 µL of the sample solution was added. Peptide Calibration 

Standard II (Bruker) was used for calibration and was dissolved in 125 µL 30:70 [v/v] 

acetonitrile : 0.1% TFA. One part calibrant solution was mixed with 200 parts HCCA matrix 

3.10 In-gel digest and ZipTip purification 

3.11 MALDI plate sample spotting 
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solution and 1 µL was spotted onto calibrant anchor spots on the anchor chip MALDI target 

plate. 

 

 

 

Aluminium and silicone concentrations in the liver were assessed by use of Synchrotron 

radiation (Elettra Sincrotrone Trieste, Italy, Beamline: TWINMIC). Dried organ samples were 

cryo-sectioned at -23°C to 10 micron thick slices and flattened by pre-cooled filter paper. They 

were freeze-dried and mounted onto Au folding grids for TwinMic spectromicroscope. The 

brightfield and differential phase contrast acquisition were supplemented by LEXRF emission 

maps of elements. An area of 80 µm x 80 µm was analysed on all samples, with a spatial 

resolution of 1.2 µm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.12 Synchrotron measurements 
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4. RESULTS 
 

 

Prior to isolating IgG from rat sera, aware of small volumes of serum obtained from one animal 

and the accompanying ethical concerns, a protocol for IgG isolation from human sera was 

optimized, presuming that both rat and human immunoglobulin G bind with similar affinity to 

the chosen affinity ligand. In this work, carbonyldiimidazole (CDI) –modified monolithic 

convective interaction media (CIM) columns with 600 nm – 750 nm average pore radius were 

used for the immobilization of recombinant protein G (Reprokine, Rehovot, Israel) and 

recombinant protein L (Acro Biosystems, Beijing, China) following similar procedure, as 

described by Černigoj et al. for protein A immobilisation [68]. Measured dynamic binding 

capacity for protein G column was ≥ 9,0 and ˂ 15 mg/mL, with a recovery of ≥ 90%. Calculated 

dynamic binding capacity from elution peak for protein L column was ≥ 9,0 and ˂ 13 mg/mL, 

with a recovery of ≥ 80% (Figure 8). 

At the start of the experiment, affinity and selectivity of human serum immunoglobulins (Igs) 

to protein G and L was compared (Figure 9).  Protein G exclusively binds with high affinity to 

the G class of human immunoglobulins. On the other hand, protein L binds to the kappa light 

chains of all antibody classes. Under isocratic elution conditions, a similar elution protein 

profile for protein G and protein L could be obtained, with a noted absence of IgA and IgM in 

the protein G eluate lane (Figure 9).  

4.1. Immunoglobulin isolation from human serum 
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Figure 8. IgG dynamic binding capacities of CIM protein G (A) and protein L (B) columns.  
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Figure 9. SDS PAGE of a comparison of elution patterns between CIM monoliths with immobilized 

protein G or L. M - Roti-Mark TRICOLOR molecular mass standard. Lanes: (1) pG flow through; (2) 

pG eluate; (3) pL flow through; (4) pL eluate. 

 

Breen et al. optimized a fractionation scheme for fast-throughput isolation of IgM and 

enrichment of low-abundance proteins [42]. Here, a similar scheme for HTP isolation of IgA, 

IgM and IgG, using both protein G and protein L, in two distinct and successive 

chromatographic procedures, is presented. After the first AMC on protein G or L, the unbound 

proteins are collected and are later applied to the second monolithic column, protein L or G, 

respectively. This results in the isolation of not only all IgG subclasses (protein G), but of IgA 

and IgM molecules carrying kappa light chains as well (protein L) (Figure 10). In this way, a 

broader selection of immunoglobulin classes and subclasses can be purified simultaneous ly, 

compared to using only protein G or A for their isolation. Moreover, this experiment is a 

foundation for isolating IgA and IgM from rat serum, as well.  
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Figure 10. SDS PAGE of immunoglobulin A, G and M isolation using affinity monolith 

chromatography. Lanes marked with * refer to the second chromatographic step. M - Roti-Mark 

TRICOLOR molecular mass standard. Lanes: (1) pG flow through; (2) pG eluate; (3) pL flow 

through*; (4) pL eluate*; (5) pL flow through; (6) pL eluate; (7) pG flow through*; (8) pG eluate*.   

 

 

4.1.1 Identification of isolated immunoglobulins 
 

To evaluate whether immunoglobulin A, G and M were successfully isolated and separated, 

MALDI TOF mass spectrometry was used for their identification. Unbound material and the 

corresponding eluted fractions were loaded on an SDS PAGE gel and corresponding bands 

were excised: with an apparent molecular weight of about 55 kDa and 27 kDa for IgG, about 

60 and 25 kDa for IgA and about 70 and 25 kDa for IgM (see Figure 10). “In gel” tryptic 

digestion was performed and peptides were introduced on a MALDI target plate. Mascot online 

search engine was used for sequence matching, allowing for 2 miscleavages and requiring a 

minimal accuracy of <20ppm. IgA and IgG heavy and light chains were positively identified, 

while in the case of IgM, only the heavy chain was recognized. This result is not surprising, 

considering the low amounts of IgM present in human serum, compared to the other two 
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examined Ig classes, and also the low visibility of IgM light chain in SDS-PAGE. Protein 

sequence coverage also correlates with the relative amounts of Ig classes present, with the heavy 

chain of IgM having the lowest coverage of only 9% (Table 3). Undoubtedly, if a larger amount 

of total protein in a fraction containing IgM was loaded on an acrylamide gel, the IgM light 

chain would be successfully identified as well.  Taking into consideration the apparent 

molecular weight of both chains (about 70 and 25 kDa, respectively) and positive identifica t ion 

of the IgM heavy chain, these data are sufficient for a positive identification of this protein.        

 

 

Table 3. MASCOT search results for human IgA, IgG and IgM after tryptic digestion. 

 

Antibody 

(heavy 

chain) 

 

Protein 

sequence 

coverage 

 

Matched peptides (in red) 

 

 

IgA  

 

 

10% 

1 ASPTSPKVFP LSLCSTQPDG NVVIACLVQG FFPQEPLSVT WSESGQGVTA 

51 RNFPPSQDAS GDLYTTSSQL TLPATQCLAG KSVTCHVKHY TNPSQDVTVP 

101 CPVPSTPPTP SPSTPPTPSP SCCHPRLSLH RPALEDLLLG SEANLTCTLT 

151 GLRDASGVTF TWTPSSGKSA VQGPPERDLC GCYSVSSVLP GCAEPWNHGK 

201 TFTCTAAYPE SKTPLTATLS KSGNTFRPEV HLLPPPSEEL ALNELVTLTC 

251 LARGFSPKDV LVRWLQGSQE LPREKYLTWA SRQEPSQGTT TFAVTSILRV 

301 AAEDWKKGDT FSCMVGHEAL PLAFTQKTID RLAGKPTHVN VSVVMAEVDG 

351 TCY     
 

 

IgG 

 

23% 

1 ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV 

51 HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKKVEP 

101 KSCDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS 

151 HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK 

201 EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ VYTLPPSRDE LTKNQVSLTC 

251 LVKGFYPSDI AVEWESNGQP  ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW 

301 QQGNVFSCSV MHEALHNHYT QKSLSLSPGK   
 

 

IgM 

 

9% 

1 DIQMTQSPST LSASVGDRVT ITCRASQSIN TWLAWYQQKP GKAPKLLMYK 

51 ASSLESGVPS RFIGSGSGTE FTLTISSLQP DDFATYYCQQ YNSDSKMFGQ 

101 GTKVEVKGTV AAPSVFIFPP  SDEQLKSGTA SVVCLLNNFY PREAKVQWKV 

151 DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG  

201 LSSPVTKSFN RGEC    
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Figure 11. A MALDI TOF fingerprint spectrum of the human IgA heavy chain. 

 

 

 
 
Figure 12. A MALDI TOF fingerprint spectrum of the human IgG heavy chain. 
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Figure 13. A MALDI TOF fingerprint spectrum of the human IgM heavy chain. 

 

 

4.1.2 High-throughput automation of immunoglobulin isolation 
 

The continuous structure of a monolith results in high external porosity, leading to increased 

permeability, which lowers the back pressure to a minimum. Since high flow rates can easily 

be applied and analysis time can be very short, monoliths are perfect supports for HTP 

screening. A semi-high-throughput isolation of human fibrinogen using monolithic supports 

with immobilized monoclonal anti-human fibrinogen antibodies was successfully performed 

[69]. Another group used monoliths for HTP isolation of transferrin from human plasma by use 

of anti-transferrin monoclonal antibodies immobilized on monoliths [70]. Pucić et al. developed 

a 96 well-plate consisting of a monolithic stationary phase with immobilized protein G which 

enabled HTP isolation and analysis of human IgG [64]. Similarly, we designed a HTP 96 well-

plate with mounted monolithic units with immobilized protein L (Figure 14). The average 

binding capacity of the column for IgG is 9.4 mg/mL. Thus, the immunoglobulin purifica t ion 

scheme that we present in this article can be adapted for a HTP and simultaneous Ig isolation 

from 96 samples. A fully automated liquid handling system, namely the Tecan Genesis 

WorkStation 200, is needed to preform HTP experiments using the 96 well-plate. It is a robot 



 

26 
 

for automating pipetting tasks, equipped with two arms: the liquid handler, an 8 channel 

pipetting arm and the robot manipulator, an arm that picks up and moves objects on the 

workstation. We programmed its software and adapted it to our experimental design for HTP 

Ig purification.  

 

 

Figure 14. A 96-well plate with mounted small monolithic columns for HTP sample preparation (BIA 

Separations). 

 

 

 

Once the protocol for the isolation of human IgG was established, the same conditions were 

used to isolate IgG from rat serum in order to look at the changes in IgG sialylation patterns in 

osteoporotic rats. Firstly, a method for rat IgG isolation was optimized using healthy contro l 

samples. Rat serum diluted in equilibration buffer was injected onto a monolithic column with 

immobilized protein L. In parallel, and under the same conditions, commercially availab le 

human IgG and IgM were loaded onto the column as control samples, both separately and as a 

1:1 mixture. After extensive washing, proteins were eluted in glycine, pH 2. As expected, rat 

IgG binds to protein L with high affinity since almost 100% of rat immunoglobulins contain 

kappa light chains (Table 4). Two distinct bands were noted at a molecular weight of around 

50 kDa, corresponding to different rat IgG subclasses, namely IgGl, IgG2a, IgG2b and IgG2c 

(Figure 15).  

 

4.2 IgG isolation from rat serum 
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Table 4. Immunoglobulin concentrations in rat and human. 

Species IgG (mg/ml) IgM (mg/ml) IgA (mg/ml) % κ/λ 

 

Rat Total: 5-7 0.6-1.0 0.1-0.2 99/1 

IgG1: ~5.85 

IgG2a: 6.7 - 8.0 

IgG2b: ca. 0.9 

IgG2c: ~2.6 

Human Total: 7.5-22 0.2-2.8 0.5-3.6 67/33 

IgG1: 5 - 9.5 

IgG2: 2.2 - 4.8 

IgG3: 0.4 - 1.0 

IgG4: 0.1 - 0.6 

 

 

 

 

Figure 15. CIM monolith with immobilized pL binds rat IgG. M - Roti-Mark TRICOLOR molecular 

mass standard. Lanes: (1) control, human IgG; (2) control, human IgM; (3) control, human IgG and 

IgM; (4) pL eluate.  
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An experimental rat model was set up, and following groups of animals were analysed: healthy 

control, sham control (ovaries were exteriorized and repositioned intact), ovariectomized 

control (OVX), OVX supplemented with synthetic zeolite, OVX supplemented with natural 

clinoptilolite and OVX supplemented with micro activated clinoptilolite (Table 2). Using the 

affinity monolith chromatography protocol previously optimized for 200 µL of healthy rat 

serum, IgG was isolated from three animals from each group, yielding triplicate samples for 

validation and statistical purposes. Although the obtained eluate contained a mixture of proteins 

rather than pure IgG, its concentration, compared to other eluted proteins, is extremely high and 

sufficient for both in-gel and in-solution digestion followed by successful analysis and protein 

validation on a mass spectrometer. An example of IgG isolation from six different anima ls, 

each belonging to a different group, is shown in Figure 15. Following 6 figures (Figure 16-21) 

show chromatograms of AMC methods that resulted in rat IgG isolation from three control and 

three treated samples, respectively. Protocol was identical to the one previously described for 

isolating IgG from human serum.     

 

 

Figure 16. IgG isolation from rat sera. CIM monolith with immobilized pL binds rat IgG. M - Roti-

Mark TRICOLOR molecular mass standard. Lanes: (1) group 0 flowthrough (FT); (2) group 0 eluate 

(E); (3) group 1 FT; (4) group 1 E; (5) group 2 FT; (6) group 2 E; (7) group 3 FT; (8) group 3 E; (9) 

group 4 FT; (10) group 4 E; (11) group 5 FT; (12) group 5 E.  
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Figure 17. A chromatogram of IgG elution, sample: 0-1, healthy control. The first peak represents 

unbound material, while the second, smaller peak, represents proteins bound and then eluted from the 

column (IgG). 

 

Figure 18. A chromatogram of IgG elution, sample: 1-1, sham. The first peak represents unbound 

material, while the second, smaller peak, represents proteins bound and then eluted from the column 

(IgG). 
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Figure 19. A chromatogram of IgG elution, sample: 2-1, OVX control. The first peak represents 

unbound material, while the second, smaller peak, represents proteins bound and then eluted from the 

column (IgG). 

 

Figure 20. A chromatogram of IgG elution, sample: 3-1, zeolite A. The first peak represents unbound 

material, while the second, smaller peak, represents proteins bound and then eluted from the column 

(IgG). 
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Figure 21. A chromatogram of IgG elution, sample: 4-1, clinoptilolite. The first peak represents 

unbound material, while the second, smaller peak, represents proteins bound and then eluted from the 

column (IgG). 

 

Figure 22. A chromatogram of IgG elution, sample: 5-1, PMA clinoptilolite. The first peak represents 

unbound material, while the second, smaller peak, represents proteins bound and then eluted from the 

column (IgG). 
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4.2.1 Validation of rat IgG isolation 
 

Affinity chromatography on a serum sample using protein L as a ligand is expected to result in 

successful purification of all immunoglobulins containing kappa light chains, if performed 

under the right conditions. Gel electrophoretic separation of proteins by their molecular weight 

serves as a further chromatographic step that confirms Ig isolation. As an extra validation step, 

mass spectrometry was used to confirm that the protein isolated from rat serum and excised 

from an SDS PAGE gel (Mw ~ 50 kDa) is indeed immunoglobulin G. After “in gel” tryptic 

digestion of IgG isolated from three animals from each of the six groups, peptides were spotted 

onto a MALDI anchor chip plate and samples were analysed on a MALDI TOF instrument. 

Mascot online search engine was used for sequence matching, allowing for 2 miscleavages and 

requiring a minimal accuracy of <25ppm.  

 

 

Figure 23. A MALDI TOF fingerprint spectrum of the rat IgG heavy chain.  
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Figure 23 represents an example of a rat IgG m/z spectrum with a Mascot score of 68 and 

protein sequence coverage of 48%. Matched peptides are shown in red.  

1 AETTAPSVYP  LAPGTALKSN SMVTLGCLVK GYFPEPVTVT WNSGALSSGV 

51 HTFPAVLQSG LYTLTSSVTV PSSTWSSQAV TCNVAHPASS TKVDKKIVPR 

101 ECNPCGCTGS EVSSVFIFPP KTKDVLTITL TPKVTCVVVD ISQ NDPEVRF 

151 SWFIDDVEVH TAQ THAPEKQ SNSTLRSVSE LPIVHRDWLN GKTFKCKVNS 

201 GAFPAPIEKS  ISKPEGTPRG PQ VYTMAPPK EEMTQ SQ VSI TCMVKGFYPP 

251 DIYTEWKMNG QPQENYKNTP PTMDTDGSYF LYSKLNVKKE TWQQGNTFTC 

301 SVLHEGLHNH HTEKSLSHSP  GK   

 

Since MS identification of IgG was effective for all samples, and not to list all gathered spectra, 

Figure 24 represents a comparison of MALDI TOF spectra of trypsinized rat IgG from all 

analysed samples, namely one animal from each group (0-6). Clearly the peak pattern is overall 

very similar, confirming that IgG was successfully identified in all samples, validating the 

efficiency of our purification method. 

 

 

Figure 24. A comparison of MALDI TOF spectra of trypsinized rat IgG peptides from all analysed 

groups (0-6). 
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In order to examine the effects of zeolite on IgG glycosylation in osteoporosis, we analysed N-

linked glycans enzymatically released from the protein. Representative sampling and adequate 

sample preparation are key factors for successful performance of further steps in any analysis, 

as well as for correct data interpretation- When it comes to glycan analysis, it is of great 

importance to optimize a protocol for derivatization of sialic acid, since this molecule is known 

to easily hydrolyse from the glycan moiety that it is attached to. Glycan carboxyethyla t ion 

reaction leads to sialic acid stabilization in MALDI TOF reflectron mode measurements. N-

Acetylneuraminic acid (NeuAc) residues are modified depending on their linkage positions. 

2,6-linked NeuAc is ethyl esterified at the carboxyl group, while 2,3-linked NeuAc forms an 

internal lactone. Unmodified NeuAc residues have a mass of 291.10 Da, while the 2,6-linked 

and 2,3-linked NeuAc, after the derivatization reaction, have masses of 319.13 Da and 273.08 

Da, respectively.  

To the author’s knowledge, this is the first semiquantitative analysis of rat’s IgG glycome. We 

successfully identified sialic acid signals in all of our samples, and a comparison of spectra of 

glycans released from all analysed groups (0-6) can be found in Figure 25. Overall m/z values 

and signal intensities are similar throughout all spectra, since possible changes in IgG glycan 

composition are expected to be minute, and thus not easily detected. It has to be noted that the 

presented assay is a semi quantitative one, and we can only judge the amount of sialic acid (or 

any other glycan moieties) present in a sample by peak intensity. Moreover, because of 

variations introduced during sample preparation, especially cotton HILIC for which pipette tips 

were manually filled with cotton, there is a discrepancy in peak intensities throughout all 

samples. To be able to give a quantitative evaluation, we compared the ratio between the main 

reference peak (1485 Da), which is the peak with the most intensity in all samples, to other 

peaks (Figure 25). An in depth analysis of each glycan MS spectrum revealed various 

glycoforms to be present, and they are all represented in Figures 26-31, along with their 

corresponding tables listing MALDI TOF measured glycan experimental masses, glycans’ 

exact glycoform mass, the difference between experimental and glycoform masses expressed 

in Daltons, and the suggested glycan structures in the sample (Tables 5-10). Experimental mass 

is the mass measured on a mass spectrometer during an experiment and it does not represent 

the actual mass of the analysed molecule. When measuring glycan masses, one has to take into 

account sodium adducts that get formed from the addition of NaOH during the glycan 

enrichment process (22.989 Da). Next to that, the derivative mass of the free reducing end has 

4.3 Rat serum IgG glycosylation  
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to be noted (18.011 Da). Finally, since sialic acid residues were carboyethylated during sample 

preparation, when investigating potential sialic acid peaks, another 273.08 Da or 319.13 Da 

have to be accounted for, depending on the linkage of NeuAc. Thus, the difference between the 

exact glycoform mass and the experimental mass is expressed in Δ Da.  

 

Figure 25. A comparison of MALDI TOF spectra of glycans released from all analysed groups (0-6) 

clearly showing the presence of a master reference peak across all spectra (1485 Da), marked with an 
arrow. 

 

 

Figure 26. Glycan legend 
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Figure 27. MALDI TOF spectrum of glycans released from rat IgG (group 0 –  control).  

 

 

 

 

Table 5. A list of MALDI TOF measured glycan experimental masses, glycans’ exact glycoform mass, 

the difference between experimental and glycoform masses expressed in Daltons, and the suggested 
glycan structures for samples from the control group (0). 

Control N-glycans (group 0) 

Experimental 

mass (m/z) 

Glycoform mass 

(m/z) 

Glycan structure Δmass 

(Dalton) 

1485.549 1444.534 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.015 

1617.736 1257.449 (NeuAc α2-6) (Hex)1 (HexNAc)1 + 
(Man)3(GlcNAc)2 

 

-0.157 
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1647.556 1606.587 (Hex)1 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.032 

1688.645 1647.613 (HexNAc)3 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

0.032 

1704.582 1663.608 (Hex)1 (HexNAc)3 + (Man)3(GlcNAc)2 
 

0.023 

 

 

Figure 28. MALDI TOF spectrum of glycans released from rat IgG (group 1 – sham operated).  

 

 

 

 

 

 



 

38 
 

Table 6.  A list of MALDI TOF measured glycan experimental masses, glycans’ exact glycoform mass, 

the difference between experimental and glycoform mass expressed in Daltons, and the suggested glycan 
structure for samples from the sham group (1). 

Sham operated N-glycans (group 1) 

Experimental 

mass (m/z) 

Glycoform mass 

(m/z) 

Glycan structure Δmass 

(Dalton) 

1282.394 1241.455 (HexNAc)1 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.06 

1339.417 1298.476 (HexNAc)2 + (Man)3(GlcNAc)2 

 
-0.058 

1485.475 1444.534 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.058 

1501.459 1460.529 (Hex)1 (HexNAc)2 + (Man)3(GlcNAc)2 
 

-0.069 

1542.489 1501.555 (HexNAc)3 + (Man)3(GlcNAc)2 

 
-0.065 

1617.655 1257.449 (NeuAc α2-6) (Hex)1 (HexNAc)1 + 
(Man)3(GlcNAc)2 

 

0.076 

1647.518 1606.587 (Hex)1 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.068 

1663.485 1622.582 (Hex)2 (HexNAc)2 + (Man)3(GlcNAc)2 

 
 

-0.096 

1809.565 1768.64 (Hex)2 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.074 

1850.600 1809.666 (Hex)1 (HexNAc)3 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.065 

1982.637 1622.582 (NeuAc α2-6)(Hex)2 (HexNAc)2 + 
(Man)3(GlcNAc)2 

 

-0.074 

2144.685 1784.634 (NeuAc α2-6)(Hex)3 (HexNAc)2 + 
(Man)3(GlcNAc)2 

 

-0.078 

2185.713 1825.661 (NeuAc α2-6)(Hex)2 (HexNAc)3 + 
(Man)3(GlcNAc)2 

 

-0.077 
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Figure 29. MALDI TOF spectrum of glycans released from rat IgG (group 2 – OVX). 

 

 

Table 7. A list of MALDI TOF measured glycan experimental masses, glycans’ exact glycoform mass, 

the difference between experimental and glycoform mass expressed in Daltons, and the suggested glycan 
structure for samples from the OVX group (2). 

OVX N-glycans (group 2) 

Experimental 
mass (m/z) 

Glycoform mass 
(m/z) 

Glycan structure Δmass 
(Dalton) 

1485.502 1444.534 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.061 

1501.482 1460.529 (Hex)1 (HexNAc)2 + (Man)3(GlcNAc)2 
 

-0.064 

1647.566 1606.587 (Hex)1 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.053 

1688.592 1647.613 (HexNAc)3 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.053 
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1704.569 1663.608 (Hex)1 (HexNAc)3 + (Man)3(GlcNAc)2 
 

-0.069 

1820.745 1460.529 (NeuAc α2-6)(Hex)1 (HexNAc)2 + 
(Man)3(GlcNAc)2 

 

0.067 

1850.659 1809.666 (Hex)1 (HexNAc)3 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.084 

1982.650 1622.582 (NeuAc α2-6)(Hex)2 (HexNAc)2 + 
(Man)3(GlcNAc)2 

 

-0.051 

2144.617 1784.634 (NeuAc α2-6)(Hex)3 (HexNAc)2 + 
(Man)3(GlcNAc)2 

 

-0.136 

 

 

 

Figure 30. MALDI TOF spectrum of glycans released from rat IgG (group 3 – OVX supplemented 
with zeolite A). 
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Table 8. A list of MALDI TOF measured glycan experimental masses, glycans’ exact glycoform mass, 

the difference between experimental and glycoform mass expressed in Daltons, and the suggested glycan 
structure for samples from the OVX group supplemented with zeolite A (3). 

Zeolite A OVX N-glycans (group 3) 

Experimental 

mass (m/z) 

Glycoform mass 

(m/z) 

Glycan structure Δmass 

(Dalton) 

1485.502 
 

1444.534 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.031 

1501.482 1460.529 (Hex)1 (HexNAc)2 + (Man)3(GlcNAc)2 
 

-0.046 

1617.651 1257.449 (NeuAc α2-6) (Hex)1 (HexNAc)1 + 
(Man)3(GlcNAc)2 

 

-0.072 

1647.566 1606.587 (Hex)1 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.02 

1688.592 1647.613 (HexNAc)3 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.02 

1704.569 1663.608 (Hex)1 (HexNAc)3 + (Man)3(GlcNAc)2 
 

-0.038 

1820.745 1460.529 (NeuAc α2-6)(Hex)1 (HexNAc)2 + 
(Man)3(GlcNAc)2 

 

0.096 

1850.659 1809.666 (Hex)1 (HexNAc)3 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.006 

1982.650 1622.582 (NeuAc α2-6) (Hex)2 (HexNAc)2 + 
(Man)3(GlcNAc)2 

 

-0.061 
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Figure 31. MALDI TOF spectrum of glycans released from rat IgG (group 4 – OVX supplemented 
with clinoptilolite). 

 

Table 9. A list of MALDI TOF measured glycan experimental masses, glycans’ exact glycoform mass, 

the difference between experimental and glycoform mass expressed in Daltons, and the suggested glycan 
structure for samples from the OVX group supplemented with clinoptilolite (4). 

 

Clinoptilolite OVX N-glycans (group 4) 

Experimental 

mass (m/z) 

Glycoform mass 

(m/z) 

Glycan structure Δmass 

(Dalton) 

1485.530 1444.534 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.003 

1501.506 1460.529 (Hex)1 (HexNAc)2 + (Man)3(GlcNAc)2 
 

-0.022 

1647.582 1606.587 (Hex)1 (HexNAc)2 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.004 
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1688.609 1647.613 (HexNAc)3 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.025 

1704.538 1663.608 (Hex)1 (HexNAc)3 + (Man)3(GlcNAc)2 
 

-0.069 

1820.754 1460.529 (NeuAc α2-6)(Hex)1 (HexNAc)2 + 
(Man)3(GlcNAc)2 

 

0.105 

1850.653 1809.666 (Hex)1 (HexNAc)3 (Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.012 

1982.650 1622.582 (NeuAc α2-6)(Hex)2 (HexNAc)2 + 
(Man)3(GlcNAc)2 

 

-0.008 

2185.755 1825.661 (NeuAc α2-6)(Hex)2 (HexNAc)3 + 
(Man)3(GlcNAc)2 

 

-0.025 

 

 

 

Figure 32. MALDI TOF spectrum of glycans released from rat IgG (group 5 – OVX supplemented 
with PMA clinoptilolite). 



 

44 
 

 

Table 10. A list of MALDI TOF measured glycan experimental masses, glycans’ exact glycoform mass, 

the difference between experimental and glycoform mass expressed in Daltons, and the suggested glycan 
structure for samples from the OVX group supplemented with PMA clinoptilolite (5). 

PMA OVX N-glycans (group 5) 

Experimental 

mass (m/z) 

Glycoform mass 

(m/z) 

Glycan structure Δmass 

(Dalton) 

1485.513 1444.534 (HexNAc)2(Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.02 

1501.486 1460.529 (Hex)1(HexNAc)2 + (Man)3(GlcNAc)2 
 

-0.042 

1617.632 1257.449 (NeuAc α2-6)(Hex)1(HexNAc)1 + 
(Man)3(GlcNAc)2 

 

0.053 

1647.567 
 

1606.587 (Hex)1(HexNAc)2(Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.019 

1688.591 1647.613 (HexNAc)3(Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

 

-0.021 

1704.589 1663.608 (Hex)1(HexNAc)3 + (Man)3(GlcNAc)2 
 

-0.058 

1850.726 1809.666 (Hex)1(HexNAc)3(Deoxyhexose)1 + 
(Man)3(GlcNAc)2 

0.06 

 

 

As one can infer from the glycan peaks detected, the majority of the most intensive peaks are 

spotted in all samples. However, in some samples a higher number of glycans was detected than 

in others (Table 11). Sugars that are not mutually shared, but specific for one or more analysed 

groups, are depicted in Table 12.   

 

 

Table 11. A list of all detected peaks and detected glycan structures for each sample. 

Sample Number of detected 

peaks 

Number of detected glycan 

structures 

0 17 5 

1 70 13 

2 20 9 

3 13 9 

4 18 9 

5 12 7 
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Table 12. A table depicting all detected glycan structures in all samples (groups 0 to 5). Composite 

glycans are shown in black; glycans with sialic acid residues are shown in green. 

0  1 2 3 4 5 

(HexNAc)2 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

 

(HexNAc)2 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

 

(HexNAc)2 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

 

(HexNAc)2 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

 

(HexNAc)2 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

 

(HexNAc)2 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

 

(HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

 (HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

(HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

(HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

(HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

(Hex)1 

(HexNAc)3 + 

(Man)3(GlcNAc)2 

  (Hex)1 

(HexNAc)3 + 

(Man)3(GlcNAc)2 

(Hex)1 

(HexNAc)3 + 

(Man)3(GlcNAc)2 

(Hex)1 

(HexNAc)3 + 

(Man)3(GlcNAc)2 

 (Hex)1 

(HexNAc)2 + 

(Man)3(GlcNAc)2 
 

(Hex)1 

(HexNAc)2 + 

(Man)3(GlcNAc)2 
 

(Hex)1 

(HexNAc)2 + 

(Man)3(GlcNAc)2 
 

(Hex)1 

(HexNAc)2 + 

(Man)3(GlcNAc)2 
 

(Hex)1 

(HexNAc)2 + 

(Man)3(GlcNAc)2 
 

(Hex)1 

(HexNAc)2 

(Deoxyhexose)1+ 
(Man)3(GlcNAc)2 

 

  (Hex)1 

(HexNAc)2 

(Deoxyhexose)1+ 
(Man)3(GlcNAc)2 

 

(Hex)1 

(HexNAc)2 

(Deoxyhexose)1+ 
(Man)3(GlcNAc)2 

 

(Hex)1 

(HexNAc)2 

(Deoxyhexose)1+ 
(Man)3(GlcNAc)2 

 

 (Hex)1 

(HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

(Hex)1 

(HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

(Hex)1 

(HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

(Hex)1 

(HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

(Hex)1 

(HexNAc)3 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

 (NeuAc α2-6) 

(Hex)2 
(HexNAc)2+ 

(Man)3(GlcNAc)2 

(NeuAc α2-6) 

(Hex)2 
(HexNAc)2+ 

(Man)3(GlcNAc)2 

(NeuAc α2-6) 

(Hex)2 
(HexNAc)2+ 

(Man)3(GlcNAc)2 

(NeuAc α2-6) 

(Hex)2 
(HexNAc)2+ 

(Man)3(GlcNAc)2 

 

(NeuAc α2-6) 

(Hex)1 
(HexNAc)1 + 

(Man)3(GlcNAc)2 

(NeuAc α2-6) 

(Hex)1 
(HexNAc)1 + 

(Man)3(GlcNAc)2 

 (NeuAc α2-6) 

(Hex)1 
(HexNAc)1 + 

(Man)3(GlcNAc)2 

 (NeuAc α2-6) 

(Hex)1 
(HexNAc)1 + 

(Man)3(GlcNAc)2 

 (NeuAc α2-6) 
(Hex)2 

(HexNAc)3 + 

(Man)3(GlcNAc)2 

(NeuAc α2-6) 
(Hex)2 

(HexNAc)3 + 

(Man)3(GlcNAc)2 

 (NeuAc α2-6) 
(Hex)2 

(HexNAc)3 + 

(Man)3(GlcNAc)2 

 

  (NeuAc α2-6) 
(Hex)1 

(HexNAc)2 + 

(Man)3(GlcNAc)2 

(NeuAc α2-6) 
(Hex)1 

(HexNAc)2 + 

(Man)3(GlcNAc)2 

(NeuAc α2-6) 
(Hex)1 

(HexNAc)2 + 

(Man)3(GlcNAc)2 

 

 
 

 

 

 

 
 

(Hex)1 
(HexNAc)2 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

(Hex)1 
(HexNAc)2 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 
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0 1 2 3 4 5 

 (NeuAc α2-6) 

(Hex)3 

(HexNAc)2+ 

(Man)3(GlcNAc)2 

(NeuAc α2-6) 

(Hex)3 

(HexNAc)2+ 

(Man)3(GlcNAc)2 

   

 (HexNAc)1 

(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 
 

    

 (HexNAc)2 + 

(Man)3(GlcNAc)2 

 

    

 (HexNAc)3 + 

(Man)3(GlcNAc)2 
    

 (Hex)2 

(HexNAc)2 + 
(Man)3(GlcNAc)2 

    

 (Hex)2 

(HexNAc)2 
(Deoxyhexose)1+ 

(Man)3(GlcNAc)2 

 

    

  (Hex)1 

(HexNAc)3+ 
(Man)3(GlcNAc)2 

   

 

 

Considering that the rat IgG glycome was not previously researched, we decided to compare 

the analysed IgG carbohydrate profile with already published human and murine IgG glycome 

(Figures 33 and 34). Most of the peaks detected in rat IgG spectra were identical to the most 

intense peaks in human and mouse IgG (Table 13). Next, we compared relative intensities of 

that peak in rat, human and mouse IgG glycan spectra (Figure 35). Furthermore, we compared 

relative intensities of mutual glycan peaks detected in rat, mouse and human IgG, relative to 

the same reference peak in rat IgG glycome (Figure 36). Finally, we investigated relative 

intensities of mutual glycan peaks detected in samples from animal groups 1 (healthy control), 

2 (sham operated) and 5 (PMA OVX), relative to the reference peak (Figure 37).  
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Figure 33. A MALDI TOF MS spectrum of the human IgG glycome [71]. 

 

 

 

 

Figure 34. The 20 most abundant released glycans of total mouse fragment crystallizable (Fc)-region 
IgG analyzed by MALDI-TOF-MS after linkage-specific sialic acid derivatization [18]. 
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Table 13. Comparison between measured rat IgG glycan peaks and human and rat IgG glycan peaks 

from literature. Peaks highlighted in blue are detected across all three species, peaks shared between 
rat and human or rat and mouse are shown in green and yellow, respectively. 

 

Human IgG glycan 

peaks (m/z) (ref) 

Rat IgG glycan 

peaks (m/z) 

Mouse IgG glycan 

peaks (m/z) 

 1282.394 1282.458 

1339.464 1339.417  
1485.529 1485.529 1485.534 

1501.522 1501.459 1501.523 
 1617.736  

1647.593 1647.556 1647.586 
1633.579 1663.485 1663.564 

1688.617 1688.645 1688.617 
 1704.582  

1809.644 1809.565 1809.639 
 1820.745  

1850.662 1850.600 1850.668 
1966.707   

1982.700 1982.650 1982.708 
  1998.714 

2012.708   

2128.766   
 2144.685 2144.761 

2185.797 2185.713  
 

 

 

 

Figure 35. A graphical representation of the relative intensity of the most prominent peak in rat IgG 
glycome (1485 Da) detected in rat, mouse and human. 
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Figure 36. A graphical representation of the intensity of mutual glycan peaks detected in rat, mouse 

and human IgG, relative to the reference peak in rat IgG glycome (1485 Da) whose value is considered 

to be 1.    

 

 

Figure 37. A graphical representation of the intensity of mutual glycan peaks detected in samples 

from groups 1, 2 and 5, relative to the reference peak in rat IgG glycome (1485 Da) whose value is 

considered to be 1.    
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Considering that the liver is the main metabolic organ, and the main mechanisms of 

clinoptilolite action is hypothesized to be detoxification in the digestive system, we decided to 

investigate liver proteomes of all six animal groups (Table 2.). Using a commercial kit that 

fractionates proteins based on their hydrophobicity, rat liver proteins were separated into five 

fractions, namely (i) cytoplasmic, (ii) membrane, (iii) soluble nuclear, (iv) chromatin-bound 

nuclear and (v) cytoskeletal fraction. Firstly, by disrupting the cell membrane, cytoplasmic 

contents are released. Tissue debris is removed through a tissue strainer before the second buffer 

dissolves everything but nuclear membranes. A third buffer yields the soluble nuclear fraction. 

Addition of microccocal nuclease releases the chromatin-bound fraction. The resulting pellet is 

finally exposed to a buffer that exposes cytoskeletal proteins. Figures 32 to 36 show SDS PAGE 

gels containing isolated liver proteins in a certain protein fraction (1-6) from six animals, one 

from each experimental group. On a one dimensional scale, there seems to be no great 

difference in protein expression in these fractions. However, some qualitative differences are 

present in fractions 3, 4 and 5 (see Figures 32,33,34), containing mostly proteins that are not 

very soluble. This experiment is a basis for further proteomic analyses. In order to dig deeper 

into the proteome, gel bands will be excised, trypsinized, and containing proteins will be 

identified by mass spectrometry. Alternatively, each fraction can be trypsinized (without SDS 

PAGE), separated by reverse phase HPLC and analysed by electrospray ionization MS/MS 

(LC-ESI-MS/MS). 

 

Figure 38. Rat liver fractionation – SDS PAGE of fraction I. Lanes: (1) group 0; (2) group 1; 

(3) group 2; (4) group 3; (5) group 4; (6) group 5.  

4.4 Rat liver fractionation 
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Figure 39. Rat liver fractionation – SDS PAGE of fraction II. Lanes: (1) group 0; (2) group 1; 

(3) group 2; (4) group 3; (5) group 4; (6) group 5.   

 

 

Figure 40. Rat liver fractionation – SDS PAGE of fraction III. Lanes: (1) group 0; (2) group 

1; (3) group 2; (4) group 3; (5) group 4; (6) group 5.  
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Figure 41. Rat liver fractionation – SDS PAGE of fraction IV. Lanes: (1) group 0; (2) group 

1; (3) group 2; (4) group 3; (5) group 4; (6) group 5.   

 

 

 

 

 

 

 

 

 

 

 

Figure 42. Rat liver fractionation – SDS PAGE of fraction V. Lanes: (1) group 0; (2) group 1; 

(3) group 2; (4) group 3; (5) group 4; (6) group 5.   
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Aluminium and silicone concentrations in the livers of animals (groups 2, 3 and 5) were 

assessed by use of Synchrotron radiation. The aluminium background signal is the same in all 

samples, with no substantial differences between groups 3 and 5, but certain hot spots (1-2 μm) 

in group 3 (zeolite A) show a much higher Al content compared to the other two samples. These 

spots are most likely nano-aluminosilicate particles generated during the breakdown of zeolite 

A's crystal structure in the digestive tract, entering the bloodstream. Moreover, silicone seems 

to be co-localized with aluminium in these hot spots.  

 

 

 

Figure 43. Presence of aluminium (A) and silicone (B) in liver slices of healthy 

ovariectomized (OVX) rats, OVX rats treated with synthetic zeolite A, and OVX rats treated 

with PMA clinoptilolite. 

 

 

 

4.5 Presence of aluminium and silicone in rat liver   
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5. DISCUSSION 
 

In this work, we developed a protocol based on polymethacrylate monolithic supports with 

immobilized recombinant protein G and protein L ligands for simultaneous isolation of 

immunoglobulins A, G and M from human serum. In opposite to both protein A and protein G 

that bind to the Fc fragment, protein L binds with high affinity to the kappa variable light chain 

regions of immunoglobulins. This different interaction allows isolation of Fab fragments of 

antibodies, but also complete antibody molecules that do not bind to protein A and protein G. 

However, only around 35% of human IgGs contain kappa light chain. A fractionation scheme 

for fast throughput isolation of IgM and enrichment of low-abundance proteins was published 

by Breen et al. [42]. It involves two different fractionation steps, namely protein A 

fractionation, resulting in the enrichment of immunoglobulins, and anion exchange 

chromatography, resulting in two separate fractions containing IgG or IgM.  Similarly, we 

developed a protocol for high throughput isolation of IgA, IgM and IgG, using both protein G 

and protein L, in two distinct and successive chromatographic procedures. After the first affinity 

monolith chromatography on protein G or L, unbound proteins are collected and are later 

applied to the second monolithic column, protein L or G, respectively. This results in the 

isolation of not only all IgG subclasses (protein G), but of IgA and IgM molecules carrying 

kappa light chains as well (protein L) (Figure 10). In this way, a broader selection of 

immunoglobulin classes and subclasses can be purified simultaneously, compared to using only 

protein G or A for their isolation. Isolation scheme that is presented here can be applied for 

high-throughput isolation of immunoglobulins, and further analysis of their glycosyla t ion 

changes as possible diagnostic and prognostic biomarkers. Miniaturized disks carrying affinity 

ligands can be mounted into ELISA plates and applied for simultaneous isolation of antibodies 

by use of laboratory robotics. Moreover, this experiment is a foundation for isolating IgA and 

IgM from rat serum, as well. 

Upon successful method development, we optimized the protocol for isolation of rat IgG using 

protein L affinity monolith chromatography. Rats are used as important model organisms and 

the lack of methodological approaches hampers the analysis of their serum IgG glycosyla t ion 

patterns. Rat immunoglobulins mostly have lambda light chains and are therefore perfect 

ligands for protein L.  Rat IgG was consequently successfully isolated from six groups of 

animals, followed by the analysis of its glycosylation pattern by MALDI TOF mass 

spectrometry. In particular, changes in glycosylation were studied in relation to osteoporosis 
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and zeolite supplementation. Interestingly, we detected the fewest number of glycans in the 

healthy control sample (only five), while the largest number was found in the sham control 

sample (thirteen), which corresponds to animals undergoing surgery. The number of detected 

glycan structures in ovariectomized animals and OVX animals treated with zeolites is 

somewhat lower, but still rather high considering the total number of peaks detected in spectra 

in these samples, 17 on average, versus 70 detected in the sham sample. Most of the glycans 

that were detected only in the sham sample are not fucosylated. The detected changes in the 

glycosylation patterns of sham operated rats could simply be a consequence of inflammation 

resulting from operation. Novokmet et al. analysed the composition of IgG N-glycomes in 107 

patients undergoing cardiac surgery and found the same pattern of changes in the first 72 h in 

nearly all individuals [72]. In another study, rapid alterations in transferrin sialylation during 

sepsis were detected [73]. Taken together, these results point to imminent changes in 

glycosylation patterns after inflammation. It has to be noted that we isolated and analysed IgG 

from only three animals from each group, and due to the small sample number, for conclusive 

statements, preferably IgG from sera from 10 animals per group should be analysed.  

Glycosylation of human and murine immunoglobulins is quite extensively researched, yet there 

is no information available on the glycome of rat immunoglobulins. Thus, we compared the 

analysed IgG carbohydrate profile with already published human and murine IgG glycome s 

(Figures 33 and 34). Most of the peaks detected in rat IgG spectra were identical to the most 

intense peaks in human and mouse IgG (Table 13). This was expected, since all three species 

are mammals, possessing the same cellular glycosylation machinery. However, there is an 

obvious difference between m/z spectra of rat IgG compared to the other two species. Human 

and murine samples share several most intensive peaks, with the peak with the highest intens ity 

in both spectra being 1647 Da. The same peak is barely detectable in all of our rat IgG spectra, 

while the most intensive peak of 1485 Da is the most prominent in all rat samples, chosen as a 

reference peak for semiquantitative evaluation. Thus, we compared relative intensities of that 

peak in rat, human and mouse IgG glycan spectra (Figure 35). A consistent almost 100 % fold 

increase in intensity is found in rat samples compared to both human and mouse, revealing a 

significant inter species difference. Next, we compared relative intensities of mutual glycan 

peaks detected in rat, mouse and human IgG, relative to the same reference peak in rat IgG 

glycome, revealing three glycoforms that had significantly different signal intensities: 1647 Da, 

1809 Da and 1809 Da, all three having the highest intensities in human samples (Figure 36). 

This finding further stands to show differences in glycan expression between species. The 
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analysis of relative intensities of mutual glycan peaks detected in samples from animal groups 

1 (healthy control), 2 (sham operated) and 5 (PMA OVX), relative to the reference peak, 

exposed a glycan (HexNAc)3(Deoxyhexose)1 + (Man)3(GlcNAc)2 (1688 Da) that is barely 

detected in sham operated animal, has a threefold higher intensity in ovariectomized sample, 

while PMA clinoptilolite treatment lowered the signal by one third (Figure 37). This particular 

glycan could well be a potential therapeutic marker. Tested zeolites expectedly exerted different 

effects on IgG glycosylation as these materials differ in structure (artificial zeolite A vs. natural 

clinoptilolite, as shown in Figure 5) and active surface area. Raw clinoptilolite has a lower 

active surface in comparison to PMA clinoptilolite which was prepared by tribomechanica l 

double micronization [26]. It is possible that the local zeolite effect in the gut affects the immune 

system through plasma cells in the Peyer’s patches, which are organized lymphoid follic les 

located in the lowest portion of the small intestine.  

Human IgG contains glycans with N-acetylneuraminic acid (NeuAc), while rat IgG contains 

glycans with both NeuAc and N-glycolylneuraminic acid (NeuGc), found in most non-human 

mammals [74]. They differ only by a single oxygen atom, but our derivatization protocol 

targeted towards sialic acid does not work for NeuGc. Unfortunately, NeuGc gets hydrolysed 

during sample preparation and by use of this protocol we could not detect this isoform in present 

samples. A solution could be a parallel experiment in which NeuGc, and not NeuAc, is 

derivatized and measured. As for NeuAc sialic acid, we detected five different species, and their 

presence varied from sample to sample. Surprisingly, only one sialic acid glycoform, (NeuAc 

α2-6) (Hex)1 (HexNAc)1 + (Man)3 (GlcNAc)2, was found in ovariectomized rats treated with 

PMA clinoptilolite (group 5). The same structure was detected in groups 0 (healthy control), 1 

(sham control) and 3 (zeolite A), but not in groups 2 (OVX) and 4 (raw clinoptilolite). In order 

to confirm this finding, glycan analysis should be done on a larger number of samples. It is 

possible that that particular glycoform is lost upon inflammation and stress [72,73], but is 

reintroduced when treated with PMA clinoptilolite or zeolite A, but not raw clinoptilolite. 

Another glycan with a sialic acid residue, (NeuAc α2-6) (Hex)2 (HexNAc)2 + (Man)3  

(GlcNAc)2, is detected in all MS spectra, except in healthy control samples and samples treated 

with PMA clinoptilolite. This finding supports our previous premise that treatment with PMA 

clinoptilolite affects IgG glycosylation, returning it to its normal physiological state, in this case 

accomplished by the loss of a sialic acid residue. Moreover, the presence of (NeuAc α2-6) 

(Hex)1 (HexNAc)2 + (Man)3 (GlcNAc)2 glycan in groups 2, 3 and 4 indicates that ovariectomy 

resulted in the introduction of a glycan on which zeolite A and raw clinoptilolite had no effect, 



 

57 
 

opposed to PMA clinoptilolite after whose treatment the glycan is not detectable, just like it is 

not detectable in the healthy control sample. There are two structures, (Hex)1 (HexNAc)3 + 

(Man)3 (GlcNAc)2 and (Hex)1 (HexNAc)2 (Deoxyhexose)1 + (Man)3 (GlcNAc)2 that were 

detected in healthy control and all treated samples, but not in sham operated or ovariectomized 

animals, allowing for the possibility that next to PMA clinoptilolite, raw clinoptilolite and 

zeolite A also have an effect on the IgG glycome. 

We still do not know whether the changes in IgG sialylation are a cause or a consequence of 

different pathologies. For example, there is a clear link between decreased IgG glycosyla t ion 

levels and autoimmune diseases. Patients with progressive rheumatoid arthritis have poorly 

galactosylated and sialylated IgG compared with patients with less severe disease or those in 

remission [75]. Degalactosylated IgG enhance pathogenic activity in several autoimmune 

disease models [76,77]. Moreover, galactosylated IgG counteract complement mediated 

inflammation, supporting the concept that galactosylation levels influence the pathoge nic 

potential of IgG [78]. Anthony et al. reported that the sialylated fraction of intravenous 

immunoglobulin G (IVIG) is effective in its anti-inflammatory activity [79]. Therefore, 

modulation of glycosylation on pathologic IgG might be vital to develop an immunomodula tory 

therapy that selectively targets pathologic autoimmune reactions. However, some recent 

research challenges the persistent view on the importance of sialylation in autoimmune 

disorders, and provides different and even provocative answers. For example, murine immune 

thrombocytopenia was ameliorated via intravenous IgG and the effects of IVIG were 

independent of sialylation of the Fc regions of IVIG [80], proving that a sialyla t ion 

independent mechanism is responsible for the positive outcome. One has to keep in mind that 

IVIG is a pluripotent and complex drug, and combined with the pathogenic heterogeneity of 

autoimmune diseases, remains still highly unexplored and does not allow for a simplis t ic 

perspective on its modes of action. To understand the contribution of each N-glycan 

component on antibody effector function, with a focus on sialic acid and fucose, Li et al. 

engineered homogenous IgG1 glycoforms using a chemo-enzymatic approach and 

performed side-by-side in vitro binding, antibody dependent cell mediated cytotoxic ity 

(ADCC) and in vivo IgG mediated cell depletion assays [81]. The results showed that core 

fucosylation exerted a significant adverse effect on all three experiments, regardless of 

sialylation status. In contrast, the effect of sialylation on ADCC was dependent on the status 

of core fucosylation. Sialylation in the context of core fucosylation significantly decreased 



 

58 
 

ADCC in vitro and suppressed antibody mediated cell killing in vivo. However, in the 

absence of fucosylation, sialylation did not adversely impact ADCC. 

There is only a limited amount of information available about the regulatory mechanisms of 

IgG sialylation within B cells. Sialylation of IgG Fc is carried out by sialyltransferases, namely 

beta-galactoside alpha-2,6-sialyltransferase (ST6Gal1 1) and beta-galactoside alpha-2,6-

sialyltransferase 2 (ST6Gal2), that catalyse the transfer of a sialic acid to galactose with α-2,6 

linkage. Cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-SA) is the substrate for 

both enzymes. ST6Gal1 sialylates all glycoproteins in the body; only those in the central 

nervous system are sialylated by ST6Gal2 [82]. ST6Gal1 can be used to modulate IgG 

sialylation levels clinically. It is ubiquitously expressed in many cell types, including plasma 

cells. However, it is important to note that ST6Gal1 expression in plasma cells is influenced by 

the types of antigens and immunization techniques [83]. In particular, antigens or immuniza t ion 

regimes that do not activate T cells maintain ST6Gal1 expression in plasma cells, leading to the 

production of highly sialylated IgG, whereas B cell activation in the presence of T cells turns 

off the expression of this enzyme [84].  

The classically defined secretory pathway of glycoproteins in B cells implies glycoprote ins 

exiting the endoplasmatic reticulum and travelling through the Golgi apparatus where N-

glycans are folded into their final structure. This entails that IgG sialylation depends on the 

secretory pathway in B cells and on metabolic circumstances of a specific cell. Recently, 

Jones et al. made a remarkable discovery when they showed B cell independent sialyla t ion 

of IgG [85]. Creation and analysis of a B cell specific knockout of ST6Gal1 revealed that 

IgG sialylation may occur independently of the B cell secretory pathway and within the 

bloodstream after IgG secretion. There was no difference in the percentage of sialylated IgG 

between wild-type and knockout animals, demonstrating that B cell expression of ST6Gal1 

is dispensable for the synthesis of sialylated IgG. ST6Gal1 is known to be secreted/cleaved 

from the Golgi membrane which normally anchors the enzyme [86], and Western blots 

showed that the liver is the primary source of cleaved ST6Gal1, produced by cells lining the 

central veins [85]. CMP-SA is a nucleotide monophosphate sugar which donates N-

acetylneuraminic acid to the terminal sugar of a glycoprotein, thus acting as a substrate for 

ST6Gal1. It has never been found in the circulation and its reported half-life is outside of a cell 

is extremely short [85]. However, already in 1981, a paper was published demonstrating that 

the half-life of extracellular CMP-SA in a rat brain is around 4 hours [87].  Jones et al.  showed 

that the nucleotide sugar donor is at least partially supplied by activated platelets [85]. Taken 
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together, these findings support a paradigm for exogenous PTM modification of 

glycoproteins, providing the immune system to modulate circulatory IgG in a dynamic 

fashion without relying only upon de novo IgG synthesis. 

Because of its extremely low Si/Al ratio and the resulting highly charged membrane, synthet ic 

zeolite A easily breaks down in the stomach, unlike other zeolites that only pass through the 

digestive system. We detected hotspots of aluminium co-localized with silicone in liver slices 

of rats fed with Zeolite A, but not in rats fed with clinoptilolite, confirming the abovementioned 

fact (Figure 43). Since liver is a detoxification organ, one can presume that clinoptilolite exerts 

some of its, if not all, beneficial properties via the liver as well. To investigate zeolite's 

detoxification effects, rats were intoxicated with aluminium chloride, and consequently fed with 

one of four types of zeolites and colloidal silica as control.  Al concentrations expectedly 

increased in the plasma, liver and bone [24]. All tested zeolites effectively decreased Al 

concentrations in the liver of intoxicated animals, while no significant changes in the liver Al 

concentrations were observed for colloidal silica-supplemented animals [24]. These results 

confirm the fact that zeolites do exert an effector function on the liver, further supporting the 

idea that clinoptilolite interacts with the liver-secreted sialylase, resulting in at least partially 

increased sialylation of IgG. This is probably due to the release of soluble silica into the blood 

in the form of orthosilicic acid which protects the body from heavy metals [35]. The finding 

that orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in 

human osteoblast-like cells in vitro [88], offers another plausible zeolite’s mechanism of action 

on bone architecture through soluble silica, independent of immunoglobulin glycosylation. To 

provide more evidence to the fact that clinoptilolite positively affect bone status in osteoporotic 

rats as a consequence of signalling changes in the body, particularly those initiated by the liver 

and the systemic spread of IgG molecules with higher numbers of sialic acid residues in their 

glycans, further complex proteomic studies of the liver should be performed.  
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6. CONCLUSIONS 
 

The main goal of this research was to examine the effects of clinoptilolite on IgG glycosyla t ion 

in the osteoporotic rat model. The rationale behind this goal is in an already established link 

between immunoglobulin sialylation and various pathologies. We developed protocols for a 

fast, reliable and high-throughput method for IgG isolation from human and rat serum, using 

polymethacrylate monolithic columns with immobilized protein L for the isolation of 

immunoglobulin G from serum of healthy rats, osteoporotic rats and osteoporotic rats 

supplemented with clinoptilolite. Furthermore, we analysed glycosylation profiles of isolated 

IgGs, with a specific focus on sialic acid residues. Finally, we analysed liver proteomes of 

healthy rats, osteoporotic rats and osteoporotic rats treated with clinoptilolite, since the main 

mechanisms of clinoptilolite action is hypothesized to be detoxification in the digestive system. 

The results of this thesis provide novel evidence on clinoptilolite mechanisms of action in a 

medical device regimen particularly through changes of liver activities as well as through 

induction of specific glycosylation changes in IgG. Present results give us the evidence that the 

developed HTP protocols for analysis of glycosylation of rat immunoglobulins, namely IgG, 

IgA and IgM, as well as the protocol for quantitative proteomic investigations of rat liver  

proteome, give us the fundament for further investigations by use of a larger number of 

experimental animals. We suggest that clinoptilolite positively affects bone status in 

osteoporotic rats as a consequence of signalling changes in the body, particularly those initiated 

by the liver and the systemic spread of IgG molecules.  
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AMBICA Ammonium bicarbonate 

ACN  Acetonitrile 

AFM  Affinity monolith chromatography 

CIM  Convective interaction media 

EDC  1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

HILIC  Hydrophilic interactions chromatography 

HOBt  Hydroxybenzotriazole monohydrate 

HTP  High-throughput 

HPLC  High pressure liquid chromatography 

IgA  Immunoglobulin A 

IgG  Immunoglobulin G 

IgM  Immunoglobulin M 

IVIG  Intravenous immunoglobulin G 

MALDI Matrix assisted laser desorption ionisation 

MS  Mass spectrometry  

NeuAc  N-Acetylneuraminic acid 

NeuGc  N-Glycolylneuraminic acid 

OVX  Ovariectomized 

PMA  Panaceo Micro Activated 

TOF  Time of flight 
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