Title Kemijska proteomika u istraživanju lijekova - selektivnost lijeka prema biološkoj meti
Title (english) Chemical proteomics in drug discovery - drug target selectivity
Author Tatjana Kovačević MBZ: 00000000000
Mentor Milan Mesić (mentor)
Committee member Igor Jurak (predsjednik povjerenstva)
Committee member Nela Malatesti (član povjerenstva)
Committee member Sulejman Alihodžić (član povjerenstva)
Committee member Milan Mesić (član povjerenstva)
Granter University of Rijeka (Faculty of Biotechnology and Drug Development) Rijeka
Defense date and country 2019-07-17, Croatia
Scientific / art field, discipline and subdiscipline BIOTECHNICAL SCIENCES Biotechnology
Universal decimal classification (UDC ) 577 - Biochemistry. Molecular biology. Biophysics
Abstract U suvremenom procesu otkrivanja lijekova jedan od ključnih koraka je razumijevanje mehanizma djelovanja potencijalnog lijeka te njegova učinka na proteinsku metu. Među najsuvremenijim pristupima identifikacije proteinske mete nekog potencijalnog lijeka je kemijska proteomika. U novije vrijeme ova se tehnika unaprijedila upotrebom fotoafinitetnog označavanja molekula pomoću 3-(trifluormetil)-3-fenildiazirinske skupine (TPD, engl. 3-(Trifluoromethyl)-3-phenyldiazirine). Ta skupina se pokazala kao najprikladnija za ovakvu vrstu označavanja budući da molekule s tom funkcionalnošću osvijetljene UV zrakama (~360 nm) stvaraju karbensku vrstu koja je reaktivni intermedijar i može stvoriti kovalentnu vezu s proteinskom metom s kojom je u bliskom kontaktu.
Da bi se testiralo ovu metodu identifikacije proteinske mete te usporedilo s drugim afinitetnim tehnikama koje se često koriste u proteomici, a ne stvaraju kovalentnu vezu, fotoafinitetno (uvođenjem 3-(trifluormetil)-3-fenildiazirinske funkcionalnosti) su obilježena dva poznata inhibitora receptora epidermalnog faktora rasta (EGFR, engl. epidermal growth factor receptor), lapatinib i erlotinib. Uvođenjem TPD funkcionalnosti važne za foto-aktivaciju i stvaranje karbena kao reaktivne vrste rađeno je na dijelu molekule za koji se molekulskim modeliranjem pretpostavilo da neće narušiti način vezivanja molekule za receptor. Dodatna modifikacija tzv. „dual tag“ uvedena je na molekulu lapatiniba kako bi se nastali kovalentno vezani kompleks molekula-protein mogao izolirati i analizirati direktno iz staničnog lizata. U slučaju erlotiniba, ostavljena je alkinska skupina originalno prisutna na molekuli te je ovakva modifikacija služila kao kontrolna molekula. Također, sintetizirane su i molekule pogodne za afinitetno vezivanje na čvrsti polimerni nosač, a koje sadržavaju amino ili alkinsku skupinu.
Sintetizirane molekule su testirane in vitro kako bi se utvrdila njihova učinkovitost u inhibiciji biološke mete (EGFR) te su zatim molekule podvrgnute interakciji sa staničnim lizatima s ili bez ozračivanja UV lampom kod 360 nm ovisno o primijenjenoj tehnologiji kemijske proteomike. Ovako „uhvaćeni“ proteini su izolirani afinitetnom kromatografijom iz staničnog lizata te identificirani masenom spektrometrijom.
U svim je eksperimentima potvrđeno da je ovim tehnikama moguće identificirati biološku metu budući da je „uhvaćen“ protein sa svim modificiranim molekulama bio upravo EGFR. Osim ovih očekivanih rezultata koji validiraju metodu, identificirano je nekoliko novih proteina za koje se vjeruje da mogu biti proteinske mete ovih lijekova. Za konačnu potvrdu da su ti proteini moguće proteinske mete za lapatinib i erlotinib, bilo bi nužno provesti dodatne eksperimente validacije.
Ovim radom dokazano je da je tehnologija kemijske protemike koristan alat za pronalaženje nepoznate proteinske mete za neku aktivnu supstancu, a osobito s fotoafinitetnim obilježavanjem molekula koje ima prednosti u odnosu na druge afinitetne tehnologije.
Abstract (english) In the modern drug discovery process, a key step is to understand the mechanism of action of potential drug and its effect on the biological target. The cutting edge aproach to identify biological target of a potential drug is chemical proteomics, especially photoaffinity labeling of potential drugs. 3-(Trifluoromethyl)-3-phenyldiazirine group (TPD) proved to be the most appropriate way for this kind of labeling, since molecules with that functionality when illuminated with UV light (~360 nm) create a carbene which is reactive intermediate and forms a covalent bond with a biological target with which it is in close contact. In order to test this type of finding of biological targets and compare it with other affinity techniques used in proteomics, that do not produce a covalent bond between protein targets and the examined molecule, photoaffinity group was introduced to two known inhibitors of the epidermal growth factor receptor (EGFR) – lapatinib and erlotinib. The introduction of TPD functionality that is important for photoactivation and the formation of the carbene as a reactive species is done on the part of the molecule for which molecular modeling established that will not disrupt the way of binding to the receptor. Additional modification, so-called dual tag, was introduced into the lapatinib to form a covalently bound protein-molecule complex that may be isolate and analyze directly from the cell lysate. In the case of erlotinib, alkyne functionality that was originally present on the molecule was preserved and erlotinib was used as a control molecule. In addition, molecules with amino and alkyne functionality suitable for affinity binding to a solid support were also synthesized. The synthesized molecules were tested in vitro to determine their effectiveness in inhibiting the biological target (EGFR) and were subjected to the interaction with the cell lysate with or without UV irradiation at 360 nm depending on the applied chemical proteomic technology. Bound proteins were isolated from cell lysates and identified by mass spectrometry. Experiments have confirmed that these techniques can identify the biological target since the "caught" protein with all the modified molecules was EGFR. In addition to these expected results that validate the method, several new proteins were identified that may be potential biological targets for these drugs. For the final confirmation that identified proteins are possible protein targets for lapatinib and erlotinib, additional validation experiments should be done. In this work was confirmed that chemical proteomics technology is a useful tool for identification and characterization of biological target of an active substance. Especially reliable tool is the photoaffinity labeling of the molecules using 3-(Trifluoromethyl)-3-phenyldiazirine group that compared to other affinity technologies has the advantage that the protein creates a covalent bond with its biological target and remains undamaged when UV light is used.
Keywords
kemijska proteomika
afinitetna kromatografija
diazirini
fotoafinitetno vezanje
EGFR
lapatinib
erlotinib
identifikacija proteina
spektrometrija masa
Keywords (english)
chemical proteomics
affinity chromatography
diazirines
photoaffinity labeling
EGFR
lapatinib
erlotinib
protein identification
mass spectrometry
Language croatian
URN:NBN urn:nbn:hr:193:593161
Promotion 2021
Study programme Title: Medicinal chemistry Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti, interdisciplinarna područja znanosti, polje biotehnologija u biomedicini (doktor/doktorica znanosti, interdisciplinarna područja znanosti, polje biotehnologija u biomedicini)
Type of resource Text
File origin Born digital
Access conditions Access restricted to students and staff of home institution
Terms of use
Created on 2021-04-26 09:18:21