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Introduction 

The highly active antiretroviral therapy (HAART), the 
combination of reverse integrase inhibitors, HIV 
protease inhibitors and an integrase inhibitors which 
suppresses HIV replication, is recognized as the most 
effective therapy for AIDS.1 According to the World 
Health Organization, 25.4 million people (67 % of 
people living with HIV) were receiving antiretroviral 
treatment by end 2019.2 Unfortunately, there are dark 
sides of lifelong HAART leading to the systemic 
complications involving heart, bone, kidney and other 
organs.3–5 From the perspective of the human 
immunodeficiency virus, the entity with the highest 

reported mutation rate,6 it successfully fights 
continuous drug selective pressure, leading to the 
emergence of drug resistant forms.7 Due to the absence 
of a successful anti-HIV vaccine and drawbacks of 
presently approved anti-HIV drugs, a design of a new 
drug candidates, with increased potency and less side 
effects (less toxic, increased pharmacokinetic 
properties) remains hot topic in scientific and 
pharmaceutical community,8–24 even 30 years after the 
first registered drug, azidothymidine.25 

Over the past 20 years, myriad of a quantitative 
structure-activity relationship (QSAR) studies were 
performed with the aim to design novel anti-HIV 
compounds. For example, Zakariazadeh et al. 12 
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designed four different QSAR models combining 
quantum and molecular mechanical descriptors for 
naphthyridine derivatives against HIV-1 integrase (HIV-
IN) activity. Tong et al. 26 build 3D-QSAR models using 
random sampling analysis on molecular surface and 
translocation comparative molecular field vector 
analysis. They designed 18 new compounds, whose 
activity against HIV-1 protease (HIV-PR) were predicted 
to be higher than the activity of the template molecule, 
and explored the mechanism of action by molecular 
docking. Descriptors based on the radial distribution 
function weighted by the number of valence shell 
electrons were used by Potemkin’s group to establish a 
model relating descriptors with the inhibition constant 
for a series of HIV-PR inhibitors.20,23 Additionally, they 
exploited those models to study influence of point 
mutations of HIV-PR to the inhibition constant.21 3D-
QSAR models for thiazolidinones of Ravichandran et al. 
27 identified the steric and electrostatic properties, as 
well as the hydrogen bond acceptor, hydrogen bond 
donor, and hydrophobic properties correlate the most 
with inhibition potency toward HIV-1 reverse 
transcriptase (HIV-RT). One of the limitations of the 
most of QSAR studies is that they took into 
consideration the homogeneous series of compounds 
against only one protein. The approach by Speck-
Planche et al. 9 try to circumvent this restriction by 
developing multi target QSAR models constructed from 
a heterogeneous database of compounds targeting 
seven essential proteins identified as crucial for the HIV 
infection. Combining the ligand-based approach and 
their QSAR models, they proposed six molecules as 
potential anti-HIV agents. The same authors proposed 
multitasking model for in silico design of compounds 
with high anti-HIV activity and desirable ADMET 
properties.28 

The enormous increase in computer power in the last 
decades coupled with the artificial intelligence 
algorithms revolutionize the computationally aided 
drug design.29,30 Wei et al. 31 calculated 2120 
geometrical, topological and electronic properties 
descriptors for the set of 381 HIV-PT inhibitors and 
9866 decoys. Then, using genetic algorithm (GA) for 
feature selection, they develop a support vector 
machine (SVM) classification model for HIV-PT 

inhibitors, with 90 % prediction accuracy for 
independent validation set. After screening National 
Cancer Institute database using the proposed classifier 
and testing in an in vitro HIV-1 protease inhibitory assay 
6 hit molecules, two molecules are proposed as 
potential inhibitors. Darnag et al. compared the 
performance of multiple linear regression (MLR), 
artificial neural network (ANN) and SVM in QSAR study 
of 38 cyclic-urea derivatives, which have been 
confirmed as HIV-PR inhibitors.32 Models obtained by 
SVM showed better quality and higher generalization 
capabilities compared to linear regression methods. 
Xuan et al. used 551 HIV-IN inhibitors with different 
scaffolds to build models for predicting anti-HIV-IN 
activity.33 After selection of 20 molecular descriptors, 
they used a Kohonen’s self-organizing map and SVM to 
obtain the model with correlation coefficient of 0.93 for 
test set. Zorn et al. conducted a machine learning study 
based on data from wild type HIV-1 cell based and HIV-
RT DNA polymerase inhibition assay.34 Comparing 
predictive abilities of seven models trained using 
different machine learning algorithms, they 
demonstrated comparable performance of support 
vector machine and deep neural network approaches. 
Recently, Stolbov et al. published web resource for 
prediction of anti-HIV activity based on the structural 
formula using GUSAR and PASS models.22 

More than 6.4 million deaths are connected to new 
infection COVID-19, as of 22 August according to data 
available from WHO. COVID-19 is a disease caused by 
SARS-CoV-2 virus. Due to its high virulence and 
problems in global vaccine campaign, efficient anti-
COVID-19 drugs are needed. One of the attractive 
targets is SARS-CoV-2 3-chymotrypsin like protease 
(3CLpro), identified as crucial enzyme mediating viral 
replication and transcription. 35,36 Various studies tried 
to repurpose existing drugs, with special attention 
given to antiviral drugs and HIV protease inhibitors.37–44 
Motivated by those studies and encouraged by 
successful designed, validation and application of QSAR 
model predicting anti-3CLpro activity,42 for all proposed 
HIV-1 protease inhibitors their possibility to stop the 
activity of the 3CLpro will be predicted. 

The main goal of the present study is to combine 
available multitarget anti-HIV model with cytotoxicity 
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model from computational-aided drug design web 
platform Chemosophia, 45 and using modified version of 
recently introduced DesPot-Grid algorithm to design 
novel potent and non-toxic anti-HIV drugs. Secondary 
aim includes repositioning of novel anti-HIV 
compounds as potential SARS-CoV-2 3CLpro inhibitors 
to fight COVID-19 pandemic. The rest of the paper is 
organized as follows. In Methods section short 
overview of anti-HIV activity and cytotoxicity models, 
together with modification introduced to the DesPot-
Grid algorithm are reviewed. In the Results and 
discussion part, potential hit molecules generated by 
DesPot-Grid are identified and analyzed. In Conclusion, 
brief summary of results is presented. 

Methods 

Molecular Fragments and Model Design 

For successful generation of novel molecules with high 
anti-HIV activity and low cytotoxicity using DesPot-Grid 
approach it is crucial to carefully select molecular 
fragments. The main block fragments include nine 
moieties extracted from the molecules confirmed as 
active in AIDS Antiviral Screen Data 46 database, three 
triazoles, all five nucleobases (with guanine and uracil 
with two different substitution possibilities) and 1,3-
oxazine-2,6-dione (thymine with substituted NH group 
by oxygen atom). Those blocks can have substitutions 
on three positions (MBF3 – main block fragment with 3 
open valences; see Supporting Information). The 
geometries were optimized using approach based on 
MM3 molecular mechanics force field and AlteQ 

quantum-chemical method,45,47,48 and saved in sdf file 
format. To fully describe the main block, in separate file 
atoms’ indices where the substitution can occur have to 
be defined, and sdf file has to be modified to create an 
open valence. This was done by removing hydrogen 
atom or methyl group bound to the atom where the 
substitution is going to be introduced. Fragments-
substituents are obtained in similar fashion, combining 
fragments from confirmed active molecules of AIDS 
Antiviral Screen Data database and a variety of 
functional groups or (poly)cyclic moieties. Again, atoms 
with open valence have to be explicitly defined in 
separate text file. In this paper, two sets of fragments-
substituents were used – with one (FS1) and with two 
(FS2) open valences. Altogether, there were 20 
fragments in MBF3 set, 87 fragments in FS1 and 40 in 
SF2 set (Figure SI1-3). Six ways to combine MBF3 with 
FS1 or/and FS2, were exploited in this study for design 
of new anti-HIV compounds (Figure 1). Thus, the 
number of combinations of structural fragments for the 
presented models varies from 13,170,060 (model A) to 
842,883,840,000 (model E). It is obvious that the 
activity prognosis for such a large number of structures 
is inappropriate. The DesPot-Grid algorithm makes it 
possible to carry out a directed design of active 
structures from the presented fragments, excluding a 
lengthy enumeration of all possible combinations. How 
the design of new molecules within DesPot-Grid 
algorithm works is schematically presented on Scheme 
1 for model B, with 1,2,4-triazine as the main block with 
three open valences (MBF3), methylene group as the 
fragment-substituent with two (SF2) and hydroxyl as 
the fragment-substituent with one (SF1) open valence. 
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Figure 1. Six models used by DesPot-Grid to generate new compounds.

Dataset Collection 

The IC50 values characterizing compounds’ 
cytotoxicity, and EC50 characterizing its anti-HIV 
effect were collected from National Cancer 
Institute database.46 Toxic effect was defined as 
the concentration necessary to inhibit the 
growth of uninfected cells (IC50). 100 most toxic 
and 100 least toxic compounds with measured 
IC50 values as molar concentration entered to 
training dataset for the cytotoxicity model 
designing. The IC50 values were converted into 
pIC50 for minimizing the variation during 
relationship establishment. The compounds 
which have pIC50 more than 8 were considered 
toxic, and if pIC50 was less than 3.3, compound 
was classified as nontoxic (Table SI1). 3D 
structures were retrieved from PubChem, 49 and 
optimized without changing geometries of 
stereo centers. 45,50,51 

In creating the training dataset for the models of 
anti-HIV activity, we used the compounds with 
both confirmed active class (CA) and confirmed 
inactive class (CI) from the United States 
National Cancer Institute database. The 
database contains more than 39000 compounds 
and corresponding anti-HIV activities, so that the 
concentrations required to observe a protective 
effect on the infected cells (EC50 values) are 
given. In addition, screening results were 
categorized as CA, CI and CM (confirmed 
moderately active). 

QSAR Models 

One of the main prerequisites of DesPot-Grid are 
robust and reliable models, capable to identify 
compounds with high anti-HIV activity and low 
cytotoxicity. To meet this requirement, 18 

models predicting anti-HIV activity and 12 
models predicting cytotoxicity are exploited. The 
final anti-HIV activity score is a geometrical mean 
of all 18 models (PA), and analogously final 
cytotoxicity score is geometrical mean of 12 
models (PT). This criterion is more stringent rule 
than arithmetic mean, but our previous studies 
demonstrate its feasibility.52 The anti-HIV activity 
score is a number in range between 0 and 1, 
where 0 means the compound does not show 
anti-HIV activity, while 1 indicates the compound 
has profound anti-HIV activity. In case of the 
cytotoxicity, 0 indicates that the compound is 
very toxic, while 1 indicates non-toxicity. Models 
used to predict anti-HIV activity and cytotoxicity 
are publicly available on chemosophia.com, 53 an 
on-line platform for cheminformatics, 
bioinformatics and drug design. In total, 18 and 
12 QSAR models were used to evaluate anti-HIV 
activity and cytotoxicity, respectively. QSAR 
models for SARS-CoV-2 3CLpro activity used in 
this study were recently developed and 
validated,42 and are being implemented on 
chemosophia.com. 

Here, only basic concepts behind those models 
are discussed, while for details reader is referred 
to original articles. 3D-QSAR Cinderella’s Shoe 
(CiS) algorithm aims to classify compounds as 
being active or inactive based on molecular 
exterior.51,54 The key point is to superimpose 
molecules of the training dataset to reach the 
best coincidence of molecular external field and 
to model pseudo – receptor complementary to 
the external field of bioactive molecules. The 
algorithm simulates pseudo-receptor based on 
Coulomb and van der Waals potentials on the 
molecular surface representing the molecular 
field. CiS algorithm calculates the entire 
spectrum of interaction characteristics, including 
interaction energies (Ej), forces (Fj) and force 
constants (kj, elastic component) 52,54: 

Scheme 1. An example of new molecule design by DesPot-
Grid following model B. 
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𝐸𝑗 = ∑(𝐸𝑗𝑚
𝐶 + 𝐸𝑗𝑚

𝑉𝑑𝑊)

𝑁

𝑚=1

+ 𝑈𝑗 (1) 

where 𝐸𝑗𝑚
𝐶  and 𝐸𝑗𝑚

𝑉𝑑𝑊 are Coulomb and Van der 

Waals energies of interaction of each m-th atom 
of the molecule with the j-th pseudo-atom of the 
receptor. 𝑈𝑗 is elastic energy of interaction of the 
molecule with the j-th pseudo-atom 

𝑈𝑗 =
𝑘𝑗∆𝑟𝑗

2

2
 (2) 

∆𝑟𝑗 is deviation of the j-th pseudo-atom of the 

receptor from the average position when 
interacting with the molecule of the dataset. In 
addition, when equating the force constants to 
zero, 

𝐹𝑗,𝑥 =
𝜕𝐸𝑗

𝜕𝑥
= 0 (3) 

the CiS algorithm can simulate an unlimitedly 
expandable receptor. This property is useful, 
since it imitates receptor pockets, which can be 
characterized by a large variation in size, like in 
HIV-1 protease. 

The use of self-consistent field in CiS carries out 
the optimal arrangement of molecules in the 
complementary receptor until a constant energy 
value and values of the forces of intermolecular 
interactions equal to zero are achieved. In the 
general case, in the algorithm, the energy 
includes Coulomb, van der Waals interactions 
and the elastic energy of intermolecular 
interactions, which in its turn depends on the 
force constants that determine the flexibility and 
the extensibility of the pseudo-receptor. 

First step of CoMIn (Continual Molecular Interior 
analysis) algorithm, a molecular interior based 
approach, includes overlaying molecules from 
the training dataset with the condition to 
maximize coincidence of the potentials or the 
quantum functions at the junctions of the 
generalized lattice (the mold of the 
superimposed dataset) 52,54. The potentials can 
be Coulomb and van der Waals potentials, 
potentials of hydrogen bonds, distribution of 

MERA atomic “matter” (eq. 4), its derivative (eq. 
5) and their products with different weight 
factors (𝑤𝑖) 

52,54: 

𝜑𝑗 = 𝑤𝑖𝑗𝛼𝑗𝑒
−𝛽𝑗𝑟𝑗𝑚

2

 (4) 

𝜑𝑗
′ = −2𝑤𝑖𝑗𝛽𝑗𝑟𝑗𝑚𝛼𝑗𝑒

−𝛽𝑗𝑟𝑗𝑚
2

 (5) 

where 𝑤𝑖𝑗  is i-th weight factor of atom j (atomic 

charge, volume, number of occupied atomic 
orbits, number of unoccupied atomic orbits, 
HOMO and LUMO energies as well as the 
products of these weight factors), 𝑟𝑗𝑚 is a 

distance of the atom j from the lattice junction 
m, and 𝛼𝑗 and 𝛽𝑗 are explained in 51. Those 

potentials are descriptors used to design QSAR 
models. In CiS and CoMIn algorithms, the 
approaches used to create relationships 
between bioactivity and descriptors include 
linear reaction of neural network (LNN), or 
neural network with sigmoid neurons (NNSN), or 
linear regression model (LRM). Then computed 
bioactivity (BA) is transformed to the probability 
of bioactivity expressed as a desirability 
function: 

𝑝 = 𝑒𝑥𝑝[−𝑒𝑥𝑝(𝑎 − 𝑏 × 𝐵𝐴)] (6) 

In total, 18 QSAR models with cross-validation 
coefficient of determination (cross-R2) in range 
0.88 - 0.95 for the prognosis of probability of 
anti-HIV bioactivity (panti-HIV = 0.5 when pEC50 = 
6.1) were created. Table SI2 and Table SI3 
summarize details of 18 anti-HIV activity and 12 
cytotoxicity models, respectively, including the 
methods and potentials used for the feature 
calculations, the algorithms used to generate the 
QSAR models, and the results of the cross-R2 
validation. 12 QSAR models with cross-R2 in 
range 0.91 - 0.99 for the prognosis of being non-
toxic (ptox = 0 when pIC50 > 8, and ptox = 1 when 
pIC50 < 3.3, ptox = 0.5 when pIC50 = 5.4) were 
created. 

DesPot-Grid 

The DesPot-Grid algorithm was used for the 
targeted design of promising anti-HIV drugs. In 
DesPot-Grid algorithm, the structure of the 



 

6 

  

molecule is represented by a set of connected 
blocks. Each block corresponds to a set of 
structural fragments (radicals), each of which 
has its own unique serial number. Each fragment 
(block) has free valence(s), which are used to 
connect to neighboring fragments (blocks), via 
single, double, or triple bond. Since the 
algorithm uses genetic algorithm for optimizing 
the target function (high anti-HIV activity, low 
cytotoxicity), the number of genes in 
chromosome is equal to the number of 
structural fragments constituting the molecule. 
As a result, the genetic code (chromosome) of 
the molecule is represented by a set of serial 
numbers of structural fragments (radicals) in 
each block (Table 1). A genetic algorithm also 
generates novel, promising structures. 2D 
structures of fragments used in this 
investigation, together with the positions of 
open valences, are presented in Supporting 
Information (Figures SI1-3). 

Table 1. An example of crossover and mutation 
in the generation of an offspring with genetic 
algorithm implemented in the DesPot-Grid. 

 MBF3 SF2 SF1 SF1’ SF1’’ 

Parent1 6 25 10 19 73 

Parent2 2 39 46 24 6 

Child1 2 25 10 19 73 

Child2 6 39 46 24 6 

Mutant1 2 25 10 19 79 

Mutant2 6 39 46 60 6 

At the first step, an initial population formation 
of 100 parent structures is generated by random 
selection of the main block and fragments 
according to the selected model (Figure 1). Each 
structure is represented by its own genetic code 
and the probability of their prospects. All 
geometries are optimized using approach based 
on MM3 molecular mechanics force field and 
AlteQ method,45,50,51 followed by predictions of 
anti-HIV activity and cytotoxicity. Then, at the 
stage of the production of the offspring of the 
next generation, the processes of crossover and 
mutation are carried out. An example of 
crossover and mutation for two parents from 

model B is presented in Table 1. From 
chromosomes of two parent molecules two 
offspring (child) chromosomes are generated. In 
addition to them, two more children with 
mutations are formed, where the value of one 
gene change randomly. All four child 
chromosomes are converted into the 3D 
structure, structures were optimized and the 
goodness score is calculated. In case if newly 
generated structure has higher goodness score 
than parent molecules used for its generation, 
the chromosome of weaker parent is replaced by 
the child chromosome. The workflow from the 
design of the QSAR model and molecular 
fragments to the final hit compounds with the 
desired properties is shown in Scheme 2. 

 

Scheme 2. The workflow for identifying 
compounds with low cytotoxicity high and anti-
HIV activity. 

Novelty testing of hits 

The topological molecular fingerprint (FP) were 
calculated for the best set of compounds 
generated by DesPot-Grid algorithm and for FDA 
approved HIV medicines (Table SI4). We adopted 
extended-connectivity fingerprints (ECFPs) 
method,55 as implemented in RDKit package 
(2020.03.1), 56 with radius of the fingerprint set 
to four. The molecular similarity was estimated 
using Tanimoto coefficient, Tc,57 

𝑇𝑐(𝐴, 𝐵) =
𝑐

𝑎 + 𝑏 − 𝑐
 (7) 
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where a and b are numbers of features present 
in compounds A and B, respectively. c is number 
of features shared by compounds A and B. The 
Tanimoto coefficient was calculated for each 
DesPot-Grid compound - FDA approved HIV 
medicine pair and for DesPot-Grid compound – 
3CLpro inhibitors. The 3CLpro inhibitors’ set 
included ten the most active compounds from 
the training set used to build QSAR model from 
the reference 42 and direct antiviral drugs from 
DrugBank database. 58,59 

Molecular Docking 

Open Babel, an open chemical toolbox, 60 was 
used to convert sdf files with 3D structures of 
compounds (compounds generated by DesPot-
Grid algorithm and twenty FDA approved HIV 
medicines listed in Table SI4) to pdb file format. 
Python script prepare_ligand4.py, a part of 
AutoDock Tools, 61 converted pdb files to pdbqt 
file format, a suitable format for running 
molecular docking experiments. 

From Protein Data Bank 62 3D structures of 
nevirapine – HIV-1 reverse transcriptase (1VRT, 
resolution 2.20 Å) and darunavir – HIV-1 
protease (4DQB, resolution 1.50 Å) were 
downloaded. Since there are missing residues in 
1VRT structure, they were modelled through the 
Chimera’s 63 interface to Modeller program 64. All 
missing residues are far from catalytic site, 
where the nevirapine is bound. PDB2PQR web 
server 65 was used to predict protonation states 
of residues’ side chains. We utilize AutoDock 
Tools to add Gasteiger charges to each atom, to 
merge nonpolar hydrogens, to determine atom 
types, and to save the structures of the prepared 
receptors as pdbqt files. All water molecules 
were removed. The center of the grid box was at 
the center of the mass of the ligand, with 
Cartesian coordinates 1.5, -36.7, 22.3 Å for 1VRT 
and 19.9, 29.7, 14.0 Å for 4DQB, and the size of 
the grid box was set to 25 × 25 × 25 Å and 20 × 
20 × 20 Å for 1VRT and 4DQB, respectively. The 
number of modes and the exhaustiveness were 
set to 100. All structures within 4 kcal mol-1 
relative to the conformation with the best 
binding score were saved. The plausibility of the 

conformation was checked by visual inspection. 
Docking was performed using the AutoDock Vina 
suite. 66 

Results and Discussion 

DesPot-Grid Algorithm 

The main goal of this paper is to propose novel 
molecules as potent anti-HIV drugs, with high 
anti-HIV activity and low possibility of unwanted 
side effects. To minimize probability of side 
effects, the goodness score (g) combining anti-
HIV activity and cytotoxicity is introduced: 

𝑔 = (∏ 𝑝𝑎𝑛𝑡𝑖−𝐻𝐼𝑉,𝑖

𝑛=18

𝑖=1

∏ 𝑝𝑡𝑜𝑥,𝑗

𝑚=12

𝑗=1

)

1
𝑛+𝑚

 (8) 

g is a geometrical mean of a scores of our 
previously described 18 anti-HIV activity 
prediction models (panti-HIV) and 12 cytotoxicity 
models (ptox) from the Chemosophia web 
service. In addition, the probability of being 
active (PA) and the probability of not being toxic 
(PT) were calculated for each compound: 

𝑃𝐴 = (∏ 𝑝𝑎𝑛𝑡𝑖−𝐻𝐼𝑉,𝑖

𝑛=18

𝑖=1

)

1
𝑛

 (9) 

𝑃𝑇 = (∏ 𝑝𝑡𝑜𝑥,𝑗

𝑚=12

𝑗=1

)

1
𝑚

 (10) 

As described in Methods section, PA is a number 
between 0 and 1, and if PA is above 0.74, the 
compound is classified as active. PT, describing 
the cytotoxicity, is also a number between 0 and 
1, where low PT values are characteristic for 
toxic compounds, while non-toxic compounds 
have PT value close to 1. 

DesPot-Grid calculations were performed on 
Intel® CoreTM i7-6700K CPU @ 4.00 GHz, 32 GB 
RAM, and 64-bit Windows 10 Pro operating 
system. At the moment, the code is not 
parallelized, so on average, one DesPot-Grid 
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calculation was running for 14 days on one core. 
It includes evolution of 10000 generations of 
new molecules within genetic algorithm, 
together with global minima search, anti-HIV 
activity and cytotoxicity predictions for each 
molecule that has been generated (child and 
mutants). The computation time is dependent 
on the size and the floppiness of the generated 
molecules, and the bottleneck is a geometry 
optimization step. 

For each of six models for generation of new 
molecules (Figure 1), 100 most potent 
compounds after 10000 genetic algorithm 
generations are saved and closely analyzed 
(Figure 2). 16 novel compounds, together with 
2D structures, goodness (g), predicted anti–HIV 
activity (PA) and predicted cytotoxicity (PT) 
scores are reported in Table 2. The criteria for 
selecting those molecules were PA score above 
0.80 and PT score above 0.79, to maximize the 
probability of identifying active compounds with 
low cytotoxicity. On Figure SI4 is presented 
comparison of PA and PT scores for initially 
generated parent molecules and for final 
population, obtained after 10000 generation for 
model B. As expected, the initial population is 
dominated by cytotoxic molecules with low anti–
HIV activity. Average PA and PT scores of the 
initial population are 0.54 and 0.04, respectively. 
Genetic algorithm simulating natural processes 
of mutations and cross overs, successfully 
optimized population, what is reflected by 
increase of average PA to 0.77 and PT to 0.81. At 
the end, all molecules are classified as non-
cytotoxic and 79 out of 100 compounds in the 
population have PA score above 0.74, what 
classify them as anti–HIV active molecules. 
Another consequence of ‘natural selection’ is 
survival of only the fittest main blocks, with the 
reduction of initial 18 to final eight main blocks 
in the population. 

 

Figure 2. Predicted anti-HIV activity and 
cytotoxicity for 600 compounds identified by 
DesPot-Grid algorithm as potent and non-toxic 
drugs against HIV. 16 hit molecules are within 
square defined by anti-HIV activity above 0.80 
(blue line) and cytotoxicity above 0.79 (red line). 
Legend is referring to the structure of the main 
block. 

Table 2. Hit molecules with 2D structures and 
the goodness (g), anti-HIV activity (PA) and 
cytotoxicity (PT) scores. 

Molecul
e 

2D structure g PA PT 

1 

 

0.84
0 

0.81
1 

0.88
5 

2 

 

0.83
3 

0.80
8 

0.87
3 

3 

 

0.83
0 

0.82
5 

0.83
8 

4 

 

0.82
5 

0.80
8 

0.85
1 



 

9 

5 

 

0.82
1 

0.80
6 

0.84
4 

6 

 

0.82
0 

0.82
0 

0.82
0 

7 

 

0.81
9 

0.82
4 

0.81
0 

8 

 

0.81
9 

0.80
4 

0.84
0 

9 

 

0.81
2 

0.80
5 

0.82
4 

10 

 

0.81
1 

0.80
7 

0.81
7 

11 

 

0.81
0 

0.80
4 

0.81
8 

12 

 

0.80
6 

0.80
8 

0.80
3 

13 

 

0.80
6 

0.80
1 

0.81
3 

14 

 

0.80
0 

0.80
6 

0.79
1 

15 

 

0.79
9 

0.80
1 

0.79
6 

16 

 

0.79
9 

0.80
4 

0.79
0 

SARS-CoV-2 Repurposing Study 

With the emergence of COVID-19 pandemic, 
drug repurposing studies included several 

antiviral drugs, including a well-known HIV-1 
protease inhibitor lopinavir.42,67–70 Among the 
FDA approved antiviral drugs, it has the highest 
predicted activity against 3CLpro.42 
Unfortunately, it was demonstrated by Zhang et 
al.71 that although it is good inhibitor of SARS-
CoV-2 3CLpro in vitro, it is not effective in vivo 
due to very low concentration of free lopinavir, 
unbound to plasma proteins. The same QSAR 
model as in reference 42 was used to estimate 
inhibition power of 600 compounds designed by 
DesPot-Grid algorithm against SARS-CoV-2 
3CLpro. Top 12 molecules ranked by its potential 
to inhibit 3CLpro are presented in Table 3. 
Compound 17 has the highest predicted 
inhibition power, with PA equal to 0.971, with 
low cytotoxicity (PT = 0.886). To put those 
numbers into broader perspective, let us 
mention that lopinavir have PA score of 0.991 
and atazanavir 0.865. Additional investigation is 
needed to reveal a mechanism of inhibition, 
ADMET properties and to experimentally 
confirm our predictions. 

Table 3. Hit molecules with 2D structures, 
activity against 3CLpro (PA) and cytotoxicity 
(PT). 

Molecule 2D structure PA PT 

17 

 

0.971 0.886 

18 

 

0.949 0.789 

19 

 

0.944 0.884 

20 

 

0.942 0.761 

21 

 

0.937 0.856 
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22 

 

0.934 0.806 

23 

 

0.925 0.872 

24 

 

0.921 0.864 

10 

 

0.919 0.817 

25 

 

0.919 0.865 

26 

 

0.907 0.821 

27 

 

0.902 0.763 

Novelty testing of hits 

Although ECFPs were initially developed for 
capturing molecular features relevant to 
molecular activity, they proved useful in 
similarity searching, virtual screening and 
clustering.55 Here, we exploited ECFPs and 
Tanimoto index to estimate molecular similarity 
between newly generated anti-HIV compounds 
and approved HIV medicines. This information 
might give initial insight into the mechanism of 
action of potential drug. 

Three the most similar compounds within hit set 
are compounds 4, 6 and 7 (Figure SI5). The 
Tanimoto’s similarity index between 4 and 6 is 
0.73, the only difference being the additional 
hydroxyl group on ethyl moiety of 6. Compound 
7 differs from 4 having piperidine instead 
piperazine bound to nitrogen atom of pyrrole 
ring. Second subset of similar compounds 
constitutes compounds 1, 8 and 16. t-butyl 

moiety directly bound to azo group in 1 is 
replaced by n-propyl group in 8. This substitution 
results with slightly lower anti-HIV bioactivity 
and slightly higher cytotoxicity. The substitution 
of hydrazyl in 1 with methoxy group (16) is 
reflected mainly by the increase of cytotoxicity, 
while predicted bioactivity remains practically 
the same. 

The FDA approved HIV medicines can be 
classified as nucleoside reverse transcriptase 
inhibitors (NRTIs) (abacavir, emtricitabine, 
lamivudine, tenofovir disoproxil fumarate, and 
zidovudine), non-nucleoside reverse 
transcriptase inhibitors (NNRTIs) (doravirine, 
efavirenz, etravirine, nevirapine, and rilpivirine), 
protease inhibitors (PIs) (atazanavir, darunavir, 
fosamprenavir, ritonavir, saquinavir, and 
tipranavir), CCR5 antagonists (maraviroc), 
attachment inhibitors (AI) (fostemsavir) and 
integrase inhibitors (II) (dolutegravir, 
raltegravir). In general, our compounds have low 
molecular similarity compared to FDA approved 
HIV medicines (Figure SI6). For example, 
zidovudine, a nucleoside reverse transcriptase 
inhibitor, is the medicine with the highest 
molecular similarity index – 0.24, 0.22 and 0.21 
with compounds 16, 1 and 8, respectively. 
Compound 15 is the most similar with nevirapine 
(NNRTI), and has the highest Tanimoto’s index 
with five out of six protease inhibitors 
(fosamprenavir being the only exception). It also 
has the highest similarity with nevirapine and 
rilpivirine (both NNRTIs). 

Top 12 molecules identified as potential 3CLpro 
inhibitors have low similarity index with ten the 
most active compounds from the training set 
from reference 42 (Figure SI7), with the highest 
similarity being just above 0.12. However, they 
have slightly higher similarity with direct antiviral 
drugs (Figure SI8). For example, compound 17 
have Tanimoto’s indices of 0.19 and 0.18 with 
Vidarabine and Famciclovir, respectively. Both 
Vidarabine and Famciclovir are analogues of 
purine nucleotide bases, while 17 has 1,3,5-
triazine ring as the main building block. 
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Favipiravir, a drug inhibiting replication of 
influenza A and B, and compound 24 are the 
most similar, with Tanimoto’s index equal to 
0.23. They have in common six membered 
heterocyclic ring with two nitrogen atoms and 
one of the substituents being halogen atom. On 
May 11, there are 42 reported clinical studies on 
clinicaltrials.gov investigating the potential of 
favipiravir against COVID-19, supporting 
potential usage of compound 24 as anti-COVID-
19 medicine. 

Molecular Docking 

Based on molecular similarity, as target 
molecules for molecular docking studies we 
selected enzymes from the complexes of drugs 
nevirapine and darunavir with wild type HIV-1 
reverse transcriptase and wild type HIV-1 
protease, respectively. 

FDA approved protease inhibitors have better 
affinity towards HIV-1 protease, compared to 
compounds designed by DesPot-Grid algorithm 
(Figure 3). For example, drugs saquinavir and 
darunavir have binding energy of -10.7 kcal mol-
1 and -9.1 kcal mol-1. The calculated RMSD is 
0.873 Å for poses of darunavir within the 
catalytic pocket for structures obtained 
experimentally by X-ray diffraction (4DQB) and 
predicted docking experiment (Figure SI9). The 
hydroxyl group of darunavir is in both cases 
favorably oriented in the proximity of neutral 
aspartic acid (ASH25) side chain to form 
hydrogen bond. Saquinavir follows the same 
interaction pattern (data not shown). Compound 
15 has the lowest binding energy of all proposed 
new anti-HIV medicines (-7.8 kcal mol-1). It is 
oriented in different fashion within the pocket. 
Oxygen atom from ether group is hydrogen 
bonded to hydrogen atom from peptide bond of 
chain B isoleucine residue (ILE50). The shortest 
distance to ASP25/ASH25 is 3.67 Å, so it is 
evident that possible inhibition of HIV-1 
protease by compound 15 includes interaction 
with residues outside the conserved catalytic 
triad (ASP25, THR26, GLY27) (Figure SI10, Table 
SI5). 

 

 

Figure 3. Binding energies obtained by docking 
experiments of novel compounds (top) and FDA 
approved anti-HIV medicines (bottom) to the 
wild type HIV-1 protease (PDB ID 4DQB). 
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Figure 4. Binding energies obtained by docking 
experiments of novel compounds (top) and FDA 
approved anti-HIV medicines (bottom) to the 
wild type HIV-1 reverse transcriptase (PDB ID 
1VRT). 

Two compounds with the best binding scores to 
wild type HIV-1 reverse transcriptase are 
compounds 13 (-10.1 kcal mol-1) and 15 (-9.5 kcal 
mol-1). Their score is comparable with the scores 
of several approved RT inhibitors (rilpivirine, 
etravirine, nevirapine), and slightly worse than 
doravirine and efavirenz (Figure 4). According to 
the analysis of the interactions between the drug 
and HIV-1 RT based on X-ray resolved 3D 
structure of HIV-1 RT – nevirapine complex, 72 
and our docking study, nevirapine interacts with 
the enzyme dominantly via hydrophobic 
interactions with LEU100, VAL106, VAL179, 
TYR181, TRP229, LEU234 and TYR318 (Figure 
SI11). Hydrophobic interactions also play crucial 
role in positioning of compound 13 into the 
binding pocket (Figure 5). Additional stabilizing 
factor is weak hydrogen bond between amino 
group of 13 and carboxyl oxygen from peptide 
bond of histidine 235 of A chain. With favorable 
orientation of hydroxyl group of tyrosine, 
nitrogen atom of 13 can serve as proton acceptor 
and form one extra hydrogen bond. 

 

 

Figure 5. Insight into the catalytic site of wild 
type HIV-1 reverse transcriptase (1VRT) with 
docked compound 13 (green, top) and 
interaction pattern (bottom). 

Conclusions 

The dream of anyone involved in drug 
development is to develop a drug that has high 
activity against the selected target with high 
selectivity and low cytotoxicity. In this article, we 
combine CoMIn and CiS algorithms with machine 
learning to propose new models for cytotoxicity 
and anti-HIV activity prediction. The cytotoxicity 
model was developed based on 100 of the most 
toxic and 100 of the least toxic compounds from 
the US National Cancer Institute. Anti-HIV 
training set was extracted from the AIDS 
Antiviral Screen Data, where the EC50 
concentrations required to observe a protective 
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effect on the infected cells were provided. 
Neural networks and linear regression 
algorithms were used to create twelve 
cytotoxicity models that yielded a cytotoxicity 
score based on a desirability function. The model 
was validated by 10-fold cross-validation, and 
the R2 values are within an interval of 0.91 to 
0.99. 

After the successful design of the cytotoxicity 
model, it was coupled with the model for 
predicting anti-HIV activity and integrated into 
the DesPot-Grid method. 18 QSAR models 
obtained by linear regression and the neural 
network algorithm and CiS and CoMIn 
descriptors were combined to calculate the 
probability of anti-HIV bioactivity. The 10-fold 
cross-validation and R2 values above 0.89 
confirmed the high predictive power of the 
newly developed anti-HIV activity models. 
DesPot-Grid is a program for the development of 
new potential drugs based on a genetic 
algorithm. It creates molecules from a 
predefined base of fragments linked by 
predefined open valences. Each molecule is 
optimized and its activity and cytotoxicity values 
are predicted. We proposed to calculate the 
goodness score as the geometric mean of 
predicted (anti-HIV) activity and predicted 
cytotoxicity. The potential of the introduced 
methods is demonstrated by the development of 
new compounds with anti-HIV activity. In total, 
six different schemes with 20 main blocks with 
three possible substitution sites and 127 
substituents with one and two open valences 
yielded 600 compounds with the desired 
properties. The genetic algorithm was shown to 
enrich the initial population of toxic and non-
active molecules with non-toxic molecules with 
high anti-HIV activity potential. While for the 
initial pool of 100 randomly generated 
compounds the average values for cytotoxicity 
and anti-HIV activity scores were 0.04 (very 
toxic) and 0.54 (not active), the scores of the 
optimized pool after 10000 generations were 
0.81 (non-toxic) and 0.77 (with anti-HIV activity), 
clearly demonstrating the potential of the 
proposed protocol. Our approach can be easily 

extended by adding additional QSAR models 
(e.g., for metabolic prediction) and is 
transferable to other areas of chemistry for 
which suitable QSAR models are available (e.g., 
for pesticide development). 

The low molecular similarity of the top 16 hit 
molecules to FDA-approved anti-HIV drugs 
suggests that the developed compounds belong 
to a new class of molecules with anti-HIV activity. 
Molecular docking experiments were used to 
test two potential mechanisms of action, namely 
the possibility of acting as HIV-1 protease 
inhibitors and as HIV-1 reverse transcriptase 
inhibitors. Compound 15 has a slightly lower 
docking score than the approved HIV-1 protease 
inhibitors, while compounds 13 and 15 have 
comparable docking scores to the approved HIV-
1 reverse transcriptase inhibitors. These results 
should be taken with caution,73 as further 
computational (molecular dynamics simulations) 
or experimental (in vitro and in vivo) studies are 
needed. 

Inspired by drug repurposing studies, we 
predicted the potential of newly developed anti-
HIV compounds as SARS-CoV-2 3CLpro 
inhibitors. To this end, the QSAR model based on 
the reconstruction of a model receptor 
molecular field (CiS algorithm) was used to 
evaluate the suitability of the compounds as 
3CLpro inhibitors. Twelve molecules were 
identified to have high inhibitory potential 
against the main SARS-CoV-2 protease, with 
compound 17 ((E)-4-(3,3-dimethyltriaz-1-en-1-
yl)-1,3,5-triazin-2-amine) having the highest 
activity score. 
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GRAPHICAL ABSTRACT 

Jurica Novak, Prateek Pathak, Maria A. Grishina, and Vladimir A. Potemkin 

The Design of Compounds with Desirable Properties – the Anti-HIV Case Study 

By applying machine learning methods, new molecules with desired properties can be designed within a 
reasonable time frame and with low computational costs. The approach is demonstrated with the 
development of anti-HIV compounds with low cytotoxicity. 

 


