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Abstract 

 

Disrupted in Schizophrenia 1 (DISC1) is a prominent gene in mental illness research, encoding 

a scaffold protein known to be of importance in the developing cerebral cortex. Reelin is a 

critical extracellular protein for development and lamination of the prenatal cortex and which 

has also been independently implicated in mental illness. Regulation of reelin activity occurs 

through processing by the metalloproteinases ADAMTS-4 and ADAMTS-5. Through cross-

breeding of heterozygous transgenic DISC1 mice with heterozygous reeler mice, which have 

reduced reelin, pups heterozygous for both phenotypes were generated. From these, we 

determine that transgenic DISC1 leads to a reduction in the processing of reelin, with 

implications for its downstream signalling element Dab1. An effect of DISC1 on reelin 

processing was confirmed in vitro, and revealed that intracellular DISC1 affects ADAMTS-4 

protein, which in turn is exported and affects processing of extracellular reelin. In transgenic 

rat cortical cultures, an effect of DISC1 on reelin processing could also be seen specifically in 

early, immature neurons, but was lost on calretinin and reelin-positive mature neurons, 

suggesting cell-type specificity. DISC1 therefore acts upstream of reelin in the perinatal 

cerebral cortex in a cell type/time specific manner, leading to regulation of its activity through 

altered proteolytic cleavage. Thus a functional link is demonstrated between two proteins, each 

of independent importance for both cortical development and associated cognitive functions 

leading to behavioural maladaptation and mental illness. 
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1. Introduction 

 

Disrupted in Schizophrenia 1 (DISC1) is a long standing candidate gene for major mental 

illness, and in particular schizophrenia, bipolar disorder and major depression. The DISC1 

gene was initially identified in a large family in which it was disrupted by a chromosomal 

translocation linked to these three conditions (Millar et al., 2000, Thomson et al., 2016). It was 

reinforced as a gene pertaining to schizophrenia and other conditions through genetic 

association studies in specific populations (reviewed in Chubb et al., 2008, Bradshaw and 

Porteous, 2012, Thomson et al., 2013) and via a separate mutation in another family (Sachs 

et al., 2005), although no single SNP or haplotype has been associated with one of these 

conditions globally. Functionally, DISC1 is an intracellular scaffold protein established to play 

a role in cortical development, impacting on both migration of cortical neurons (Kamiya et al., 

2005) and cortical progenitor proliferation (Mao et al., 2009). Protein pathology of the non-

mutant DISC1 protein has also been associated with mental illness (Leliveld et al., 2008, Ottis 

et al., 2011) and behavioural disorders (Trossbach et al., 2016). 

 Reelin meanwhile is a large extracellular protein, originally identified as being deleted 

in the reeler mouse mutant (D'Arcangelo et al., 1995). Reelin is highly expressed during 

forebrain development by Cajal-Retzius cells (Ogawa et al., 1995), a specialized form of early-

born neuron, as well as by some other cell types including postnatal GABAergic interneurons 

(Pesold et al., 1998). Functionally, reelin is vital for layer formation in the developing cortex, as 

a result of its ability to modulate the polarity, process orientation and migration of cortical 

neurons via assorted signalling pathways (reviewed in Förster, 2014, Sekine et al., 2014). 

Shortly after its identification, reduced levels of reelin were noted in schizophrenia patients 

(Impagnatiello et al., 1998), with specific species of the reelin protein later shown to be 

deregulated in this condition, bipolar disorder and depression (Fatemi et al., 2001). Similar 

results have also been reported since by others, while a considerable number of genetic 

association studies also associated it with schizophrenia and autism spectrum disorders 

(reviewed in Ishii et al., 2016). Negative genetic association findings to mental illness have 
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also been reported, although one positive finding was at the genome-wide level (Shifman et 

al., 2008). Additionally, mice heterozygous for the reeler mutation display phenotypes 

reminiscent of aspects of schizophrenia (Tueting et al., 1999, Rogers et al., 2013, Schmitt et 

al., 2013). 

 Given the roles of these two proteins in both cortical development and the pathogenesis 

of mental illness, we sought to discern whether they operated in a common pathway. Such 

links between DISC1 and reelin have been hypothesised previously (Deutsch et al., 2010, 

Bader et al., 2012), and the two proteins share several common pathway elements, which are 

known to include LIS1, GSK3β, Akt and APP (Assadi et al., 2003, Ohkubo et al., 2003, Brandon 

et al., 2004, Hashimoto et al., 2006, Jossin and Goffinet, 2007, Hoe et al., 2009, Mao et al., 

2009, Young-Pearse et al., 2010). Our results, however show, for the first time a direct 

functional link between DISC1 and reelin, with DISC1 found to alter the post-translational 

regulation of reelin by proteolytic cleavage. 
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2. Materials and methods 

 

2.1 Animals 

All animal work was approved by the LANUV (State Agency for Nature, Environment and 

Consumer Protection), North Rhine-Westphalia, Germany.  A transgenic rat line expressing 

human DISC1 under the Syrian hamster PrP promoter, on a Sprague-Dawley background, has 

been described in detail previously (Trossbach et al., 2016). The same cosmid system and 

technique was used to introduce human DISC1 under the same promoter into a C57BL/6N 

mouse. The presence of the transgene in a stable founder line was confirmed at both the 

transcript and protein level within the brain (Fig. 1A-B). Heterozygotes were generated by 

crossing the transgenic mouse with wild type C57BL6/N mice. As the mouse experiments were 

performed using heterozygous DISC1 mice crossed with heterozygous reeler mice, the 

ensuing litter included wild type pups which were used as controls for their transgenic 

littermates. Pups with both the DISC1 and reeler alleles were not allowed to grow past one 

week of age. For the generation of brain homogenates, animals were sacrificed by decapitation 

and the whole brain rapidly extracted and flash-frozen in liquid nitrogen. Tail samples were 

taken for genotyping. Frozen brains were homogenized to a final concentration of 7.5% (w/v) 

in 50 mM HEPES pH 7.5, 250 mM sucrose, 5 mM MgCl2, 100 mM KAc, 1% Triton X-100, 

containing protease and phosphatase inhibitor cocktails and DNaseI. Homogenates were 

incubated with gentle spinning at 4°C for 2 hours and then mixed with 2x SDS loading buffer. 

 

2.2. Antibodies 

The 20E12 monoclonal antibody was raised against a recombinant fragment of mouse reelin 

(amino acids 24-500) using previously described protocols (Korth et al., 1999). The final 

antibody was shown to be specific for reelin (Fig. 1C-E) and was used at x500 dilution for 

western blot (WB) and x300 for immunocytochemistry (ICC). Anti-DISC1 monoclonal antibody 

14F2 (x500 for WB), anti-DISC1 polyclonal antibody FFD5 (x300 for ICC), and polyclonal anti-

ADAMTS-4 (x500 for WB) have been described previously (Leliveld et al., 2008, Ottis et al., 
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2011, Hisanaga et al., 2012), the latter being a gift from Prof. Mitsuharu Hattori (Nagoya City 

University, Japan). Commercial antibodies were used against α-actin (Sigma-Aldrich, #A2066, 

x5000 for WB), Akt (Cell Signaling Technology, #2920 and #4060, x1000 each for WB), 

calretinin (GeneTex, #GTX103261, x300 for ICC), cofilin (Santa Cruz Biotechnology #sc-

12912-R, x200 for WB, and Cell Signaling Technology #3318, x1000 for WB), Dab1 (Merck 

Millipore, #AB5840, x1000 for WB), EBF2 (antibodies-online, #bs-11740R, x100 for ICC), Erk 

(Cell Signaling Technology, #4379 and #9107, x1000 each for WB), GSK3β (Cell Signaling 

Technology #5558 and BD Transduction Laboratories #610201, x1000 each for WB) reelin 

(Merck Millipore, #MAB5364, x1000 for WB) and α-tubulin (Sigma-Aldrich,  #T9026, x2000 for 

WB). 

 

2.3 Cell and neuronal culture 

HEK293 (human kidney derived) cells expressing recombinant reelin or GFP as a control 

(Förster et al., 2002) were a gift from Dr. Eckart Förster (Centre for Molecular Neurobiology 

Hamburg, Germany) and were grown in D-MEM with 5% foetal calf serum, penicillin and 

streptomycin. SH-SY5Y (human neuroblastoma) cells with inducible DISC1 expression were 

described previously (Trossbach et al., 2016) and were cultured in D-MEM/F-12 with 5% foetal 

calf serum, non-essential amino acid solution supplement, penicillin and streptomycin. Primary 

neurons were prepared from the cortices of embryonic day 18 rats, seeded onto poly-L-

ornithine coated plates and grown in Neurobasal Medium, supplemented with 2% B-27, 2mM 

GlutaMAX, penicillin and streptomycin. All cell culture media and supplements from Thermo 

Fischer Scientific.  

HEK293 cells with inducible ADAMTS-4 expression were generated using a lentiviral 

tetracycline-controlled expression system, consisting of lentiviral expression vectors pLenti 

CMVtight Hygro DEST and pLenti CMV rtTA3 Blast (gifts from Dr. Eric Campeau (Campeau 

et al., 2009), Addgene plasmids #26433 & #26429). Full-length human ADAMTS-4 with a C-

terminal V5-tag was cloned into pLenti CMVtight Hygro DEST by Gateway cloning (Thermo 

Fisher Scientific). Viral particles were produced for both constructs in 293FT cells using a third-
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generation lentiviral packaging system (Dull et al., 1998). HEK293 cells were then infected 

sequentially with lentiviral particles expressing rtTA3 or ADAMTS-4, with cells cultured to 

stability after each infection using blasticidin or hygromycin respectively for selection. Double-

stable cells were maintained in D-MEM with 10% foetal calf serum, 1% sodium pyruvate, 

penicillin, streptomycin, blasticidin and hygromycin. 

Cell lysates were prepared in PBS / 1% Triton X-100 / 20 mM MgCl2 containing 

protease and phosphatase inhibitors and DNaseI. For epigallocatechin gallate (EGCG) 

experiments, cells were treated with 2 µl/ml doxycycline, 150 µM EGCG (based on 

experiments by Krstic et al., 2012) and/or vehicle for 18 hours. For protein over-expression 

experiments, cells were transfected using Lipofecamtine 2000, according to manufacturers’ 

instructions, with pRK5-DISC1 (a gift from Dr. Akira Sawa, John Hopkins Medical School, 

Baltimore, USA) and/or pCMV-Sport6-ADAMTS-4 (a gift from Prof. Mitsuharu Hattori, Nagoya 

City University, Japan). 

 

2.4 Western blotting and quantification 

Western blotting was performed according to standard protocols. Membranes were blocked 

for 1 hour in PBS / 0.05% Tween / 5% milk powder, and then antibodies applied in PBS / 0.05% 

Tween for 1-16 hours. After washing of membranes in the same buffer, IRDye secondary 

antibodies (LI-COR Biotechnology) were applied at a dilution of x30 000 for 1 hour in PBS / 

0.05% Tween. After washing, proteins were visualized using an Odyssey Clx infrared imaging 

system (LI-COR Biotechnology) and quantified using this systems accompanying software. All 

protein levels were normalised to actin or tubulin (as shown in the corresponding blot) as a 

loading control, except for when directly comparing the ratio between two species of the same 

protein, or when examining protein in cell media.. 

 

2.5 Immunocytochemistry and microscopy 

Primary neurons on glass cover slips coated in L-orthinine were fixed with 4% 

paraformaldehyde in PBS for 10 min and then permeabilised for 30 min with PBS / 0.5% Triton 
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X-100. Cells were blocked with PBS / 10% goat serum and then incubated sequentially with 

primary and Alexa Flour secondary antibodies (Thermo Fischer Scientific, used at x500 

dilution), washing three times with PBS in-between. Coverslips were mounted onto glass slides 

with ProLong Gold mounting medium containing DAPI (Thermo Fischer Scientific) and viewed 

using an LSM-510 confocal microscope (Zeiss). 

 

2.6 Real time PCR 

Reverse transcription of RNA samples was carried out using the M-MLV Reverse 

Transcriptase (H–) Point Mutant (Promega). RT-PCR analysis was performed using a 

StepOnePlus Real-Time PCR Cycler (Applied Biosystems) and the Platinum SYBR Green 

qPCR SuperMix-UDG (Invitrogen). Relative expression levels were calculated using 

StepOnePlus Software 2.0 (Applied Biosystems) with the 2−ΔΔC
T method. ADAMTS4 

expression levels were normalized twice; first to the housekeeping gene ARF1 and then to the 

expression levels of untreated controls. The following primer sets were used: ADAMTS4:: 5′

-CCTGACCACTTTGACACAGC-3′ and 5′-CTGACTGGAGCCCATCATCT′; ARF1: 5′-

GACCACGATCCTCTACAAGC-3′ and 5′-TCCCACACAGTGAAGCTGATG-3′. 

 

2.7 Statistics 

Distribution of genotypes among crosses of transgenic DISC1 and reeler mice were analysed 

by chi-squared test. Comparisons of protein signals between three or more genotypes or 

treatments were performed by one-way ANOVA, with Dunnett’s multiple comparison test. 

Comparisons of only two genotypes were performed using Walsh’s t-test. All error bars 

represent standard error of the mean. 
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3. Results 

 

3.1 Transgenic DISC1 alters the processing of reelin in the perinatal mouse brain 

To investigate potential interplay between the DISC1 and reelin proteins during 

neurodevelopment, reeler heterozygous mice were cross-bred with heterozygous mice 

expressing human DISC1 (Fig. 1A-B, see section 2.1). Heterozygous reeler were chosen over 

homozygous reeler mice because DISC1 mouse models (both knockdown animals and those 

expressing mutant variants of the protein) show subtle behavioural and cognitive deficits 

(Lipina and Roder, 2014) which would likely not be detectable on the background of the gross 

rearrangements in cortical layering associated with the homozygous reeler mouse (Ogawa et 

al., 1995). Genotyping confirmed the presence of all four genotypes (wild type: WT, DISC1 

heterozygote: Dhet, reeler heterozygote: Rhet, and animals heterozygous for both: DhetRhet), 

although the distribution was not Mendelian (Fig. 2A), demonstrating that at least one of the 

genetic alterations affects viability. The reeler phenotype was the more detrimental to viability. 

Curiously, the DhetRhet genotype was more abundant than the Rhet alone, potentially 

implying that transgenic DISC1 can partially rescue viability defects due to reeler, however 

with the numbers of animals used, no statistically significant interaction was detected by the χ2 

test (p = 0.10). 

To probe possible interactions between transgenic DISC1 and reelin in these animals, 

five litters of pups from such breedings were sacrificed within twelve hours of birth (P0-P0.5) 

and brain homogenates prepared. Western blotting of the brains showed a reduction in the 

total level of reelin by approximately 45% could be confirmed in the presence of a reeler allele 

(WT vs. Rhet, Fig. 2B&C, Supplemental Fig. S1A&B), however this loss was unevenly 

distributed. Three species were detected using our N-terminal derived antibody, consistent 

with 450 kDa full length reelin, and two known processed fragments (Lambert de Rouvroit et 

al., 1999) described in the literature as being 350 kDa and 130-170 kDa (which in our gel 

system runs at 130-140 kDa). In the brain homogenates of animals with the reeler allele, signal 

intensity of the species corresponding to processed reelin decreased, while there was no 
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significant change in levels of full length (non-processed) reelin. The signalling pathways 

responsible for processing of reelin may therefore be regulated in order to maintain 

homeostasis of full length reelin. In contrast, the presence of a DISC1 transgene led to an 

increase in full length reelin of 38±11% (WT vs. Dhet, Fig. 2B&C, p < 0.05), but not in the total 

level of all reelin species (full length and processed), with a corresponding decrease in 

processed reelin. This implied that expression of transgenic DISC1 was inhibiting the 

processing of reelin in the brains of these animals. The increase in the proportion of reelin 

which was full length when a DISC1 allele was present was also statistically significant (Fig. 

2D, p < 0.01). 

To determine whether this had a functional effect, the downstream Reelin signalling 

factor Dab1 was analysed. It was not possible to measure Dab1 phosphorylation in this assay 

due to the use of flash frozen as opposed to fresh brain tissue (a necessity due to crossbred 

mouse litters being born on different dates). Therefore the level of total Dab1 was instead 

assayed, as reelin also influences the degradation of Dab1 (Arnaud et al., 2003). While the 

presence of a reeler allele reduced Dab1 protein levels by 18±5% (WT vs. Rhet, Fig. 2E&F, 

Supplemental Fig. S1C, p = 0.056), this was restored in the presence of a DISC1 allele (Rhet 

vs. DhetRhet, Fig. 2E&F, p < 0.05). This would be consistent with the DISC1-related restoration 

of normal levels of specifically full length reelin rescuing the deficit in Dab1 activity, even while 

levels of total reelin are decreased. Both DISC1 and reelin have previously been reported to 

affect Akt signalling (Hashimoto et al., 2006, Jossin and Goffinet, 2007), a downstream 

element of Dab1, and indeed the presence of a DISC1 allele did increase the phosphorylation 

of Akt (Fig. 2G&H, Supplemental Fig. S1D), with a similar trend effect of the reeler allele, 

although the effects were not seen to be cumulative. No significant effect was seen however 

on three other downstream elements of reelin signalling: Erk1, GSK3β or cofilin (Supplemental 

Fig. S2). 

 

3.2 Intracellular DISC1 can affect extracellular reelin in cell culture through the ADAMTS-4 

enzyme 
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Processing of reelin at both of its major cleavage sites occurs through two enzymes of the A 

Disintegrin and Metalloproteinase with Thrombospondin motifs family, ADAMTS-4 and 

ADAMTS-5 (Hisanaga et al., 2012, Krstic et al., 2012). While both proteins could be detected 

in the P0-P0.5 mouse brain samples, their expression levels were too weak, and the available 

antibodies too lacking in specificity, to reliably quantify. Therefore, to investigate a potential 

relationship between DISC1 and ADAMTS in reelin processing, cell media containing freshly 

prepared recombinant reelin was incubated for 18 hours with transgenic SH-SY5Y 

neuroblastoma cells that express DISC1 in response to doxycycline (Trossbach et al., 2016), 

but no detectable endogenous DISC1 protein. Cells were variously treated with doxycycline, 

EGCG (a selective inhibitor of ADAMTS-4 and 5, Vankemmelbeke et al., 2003) and/or vehicle 

controls. The ensuing conditioned media was then analysed by western blot (Fig. 3A) showing 

no effect of DISC1 expression on total reelin levels, unlike EGCG which led to a 50% total 

reelin reduction (Fig. 3B). Notably however, DISC1 expression led to an increase in the 

proportion of reelin in the media which was full length, suggesting that DISC1 was inhibiting 

reelin processing, as in the transgenic mice (Fig. 3C). Furthermore, this effect was not seen 

using DISC1-expressing cells which had also been treated with EGCG, suggesting that the 

effect of DISC1 on reelin processing is dependent on ADAMTS-4/5 (Fig. 3C). 

It is notable in this experiment that overexpression of intracellular DISC1 is able to 

affect the processing of recombinant reelin in the cell media, despite the two proteins 

presumably never coming into direct contact with each other. To determine whether ADAMTS-

4 may provide the link between them, HEK293 cells expressing exogenous reelin were 

transfected for 6 hours with human DISC1 and/or murine ADAMTS-4 and then incubated for 

42 hours in fixed volumes of media. As expected, expression of ADAMTS-4 led to an increase 

in reelin processing in the conditioned media (Fig. 3D&E), whereas this was not seen following 

expression of both ADAMTS-4 and DISC1. This was, seemingly because the expression of 

DISC1 led to a dramatic decrease in levels of cellular ADAMTS-4 (Fig. 3D&F), whereas in 

contrast the expression of ADAMTS-4 had no significant effect on levels of DISC1 protein. 

Both the levels of ADAMTS-4 within the cell (predominantly the 105 kDa form, retaining its pro-



 

12 
 

domain) and extracellular ADAMTS-4 (the known 70kDa active form, Wang et al., 2004) were 

affected. An equivalent effect of DISC1 on ADAMTS-4 mRNA levels was not seen however 

(Fig. 3G), suggesting that the DISC1 protein may instead effect the stability or turnover of 

ADAMTS-4 in the cell. This effect of DISC1 on ADAMTS-4 levels could also be seen in another 

cellular system: transgenic HEK293 cells which over-express human ADAMTS-4 in response 

to doxycycline (Fig. 3H, described in section 2.3). In this case, transient over-expression of 

human DISC1 led to an approximately 50% reduction in levels of both the pro-form and the 

active, mature form of ADAMTS-4 (Fig. 3H&I). 

 

3.3 Transgenic DISC1 alters reelin processing in a cell type dependent manner in rat cortical 

cultures 

To determine whether the effect of DISC1 on reelin processing was generalizable to other 

experimental systems, our existing DISC1-transgenic rat model was employed (Trossbach et 

al., 2016). Primary cortical neuronal cultures were prepared from six E18 transgenic embryos, 

as well as from six wild type Sprague-Dawley rat embryos (“control embryos”), and seeded 

onto plates at a consistent density. After 24 hours in vitro, fresh media (without reelin) was 

added and allowed to condition for 48 hours before western blotting. Levels of full length reelin 

or the larger of the two processed species were fairly consistent, but too low to accurately 

quantify. However, the 130 kDa form was approximately 40% lower in media conditioned with 

transgenic cultures compared to those from control cultures (Fig. 4A,B). No reelin species of 

130 kDa or higher could be detected in cell lysates. Therefore, like in the mouse brain 

homogenates, processing of reelin is decreased in rat cortical cultures in the presence of a 

transgenic DISC1 allele. Notably however, media conditioned with neurons instead up to 8 

days in vitro did not show this effect (Fig. 4C), suggesting the effect of DISC1 on reelin 

processing to be developmentally time-dependent. Levels of ADAMTS-4/5 in the cells/media 

were too low to accurately measure, meaning that it cannot be conclusively demonstrated if 

the enzymes were responsible for the effect in this system. 
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To investigate this effect, cortical neuronal cultures were examined by 

immunofluorescence. After 1-3 days in vitro, reelin was seen to be strongly expressed by a 

small population of cells, less than 1% of those in culture, with a distinctive morphology (Fig. 

4D). These cells also expressed Ebf2 (Early B-cell Factor 2, Fig. 4E), but were negative for the 

calretinin (Fig. 4F), which would be consistent with Cajal-Retzius cells. In contrast, such cells 

could not be seen in cultures after 8-10 days in vitro. Instead at this time point, a much more 

abundant population of reelin-expressing cells were seen to be present, which were calretinin-

positive and with a more classically neuronal morphology (Fig. 4G). The effect of DISC1 on 

reelin therefore appears to be specific to certain cell types. The presence of human DISC1 in 

both sets of reelin positive cells, was confirmed in the transgenic cultures (Fig. 4H).  
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4. Discussion 

 

Despite their established importance for both mental illness and cortical development, no 

strong functional links between DISC1 and the reelin pathway has previously been established. 

It has been shown that knockdown or over-expression of either Dab1 or APP leads to 

mislocalisation of DISC1 (Young-Pearse et al., 2010), indicating DISC1 to lie downstream of 

them and thus most likely of reelin signalling, however here we demonstrate for the first time 

that DISC1 also has a function upstream of reelin, through regulating its proteolytic cleavage. 

Reelin is naturally processed in vivo from a 450 kDa full length protein, with the N-

terminal section of the protein, required for its multimerization and signalling through Dab1 

(Utsunomiya-Tate et al., 2000, Kohno et al., 2009) existing in 130-170 kDa and 350 kDa 

processed fragments. In our P0 mouse brain homogenate tests (section 3.1), the loss of a 

reelin allele (through one copy of the reeler mutation) led to the expected approximately 50% 

decrease in total reelin. Notably however, there was no significant change in the amount of full 

length (450 kDa) reelin present, suggesting that some cellular feedback mechanisms exist in 

order to regulate the amount of reelin processing which occurs. DISC1 may well influence such 

processes as, in the same system, the presence of transgenic DISC1 was shown to lead to a 

reduction in both the N- and C-terminal cleavage, without altering total reelin levels. It remains 

to be determined whether this is an effect of the presence of additional functional DISC1, or 

due to the presence of insoluble aggregated DISC1, which can also be detected in these 

transgenic mice, as it was in our previously described transgenic rat (Trossbach et al., 2016). 

Furthermore, as complete brain homogenate was employed, it is not possible to determine if 

the effect of DISC1 on reelin occurs in specific brain regions, as might be hypothesised based 

on the decrease of reelin expression in the prefrontal cortex which has been associated with 

schizophrenia (Habl et al., 2012). Nevertheless, the effect of DISC1 on N-terminal cleavage of 

reelin could also be confirmed in primary neurons derived specifically from the cortex of rats, 

as determined by measuring levels of the processed 130 kDa reelin species, although levels 

of the other processed species were too low to easily detect and quantify. These differential 
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effects of DISC1 on individual reelin species are of particular interest given it has previously 

been reported that full length reelin is increased in the blood of schizophrenia patients, whereas 

one of its major breakdown products (described by the authors as 180 kDa, but seemingly 

corresponding to the 130 kDa described here) were lowered in patients with bipolar disorder 

or depression (Fatemi et al., 2001). 

ADAMTS-4 is an extracellular protease, originally identified as a processor of cartilage 

aggrecan (Tortorella et al., 1999). Both ADAMTS-4 and the closely related enzyme ADAMTS-

5 are also known to act on reelin, cleaving reelin at two sites yielding the 350 kDa and 130-

170 kDa reelin species (Hisanaga et al., 2012, Krstic et al., 2012). Notably, it was ADAMTS-4, 

which plays the more prominent role in reelin processing (Krstic et al., 2012), which was 

affected by over-expression of DISC1 (section 3.2). Furthermore, in cell culture, DISC1 was 

shown to affect the processing of extracellular reelin, except following the inactivation of 

ADAMTS-4/5 with EGCG, suggesting an ADAMTS enzyme to be the mechanism by which this 

effect is relayed out of the cell. In concordance with this, expression of DISC1 was shown to 

modulate levels of ADAMTS-4 both within and outside the cell, suggesting DISC1 to have an 

effect on ADAMTS-4 prior to it becoming exported. The subsequent effect of ADAMTS-4 on 

reelin can be assumed to occur outside of the cell, in this case in the cell media. 

In cortical cultures from E18 rats (section 3.3), the effect of DISC1 was detectable in 

the first 3 days in vitro, while reelin was expressed solely by EBF-positive cells with a distinctive 

morphology, but not following the emergence of Reelin-expressing cells resembling 

interneurons, demonstrating a cell-type specific effect. We have interpreted these early cells 

to most likely be Cajal-Retzius cells based on their expression timing and the presence of 

reelin and Ebf2, but not calretinin, although in the absence of positional data, this designation 

must be treated as provisional (Anstötz et al., 2014). Decline in Cajal-Retzius cell numbers 

occurs principally in rats at around two weeks after birth, as a result of caspase 3-dependent 

apoptosis, although loss of reelin expression occurs prior to cell death (Chowdhury et al., 2010, 

Anstötz et al., 2014, Anstötz et al., 2016). If these reelin and EBF2-positive, but calretinin-

negative cells are indeed Cajal-Retzius cells, then the slight differences in timing likely reflect 
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the lack of localization-specific signalling in cell culture compared to the highly ordered cerebral 

cortex. The absence of cells positive for both reelin and calretinin in the P0-P2 rat cortex has 

also been reported previously (Martinez-Galan et al., 2014). 

In this paper, it has been demonstrated that an established mental illness-related 

protein involved in neurodevelopment, DISC1, and a major neurodevelopmental protein 

implicated in mental illness, reelin, exist in a common pathway in the perinatal cortex within 

two different transgenic rodent models, with DISC1 inhibiting the processing of reelin by 

ADAMTS-4/5. Common areas of function of the two proteins, particularly with regard to their 

individually identified roles in neuronal migration are therefore of considerable interest when 

considered in light of the neurodevelopmental hypothesis of schizophrenia (Murray and Lewis, 

1987, Weinberger, 1987, Fatemi and Folsom, 2009). Further analysis of the consequences of 

DISC1 on reelin would thus reveal more regarding their common neurodevelopmental 

functions, with potential implications for the early development of pathological features that 

influence mental illness in later life.   
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Figures 

 

Figure 1. (A) Western blot showing the expression of DISC1 in three transgenic mice and 

three litter mate controls. Samples from the previously established DISC1 rat are shown for 

comparison. The DISC1 antibody, 14F2, was described previously (Ottis et al., 2011) and is 

specific for human DISC1 over rodent DISC1 (Trossbach et al., 2016). (B) Quantitative PCR 

of the level of human DISC1 in the genomic DNA of the transgenic animals from part A. All 

wild-type animals were negative for human DISC1. (C) The novel anti-reelin monoclonal 

antibody 20E12 tested on media which had been incubated with HEK293 cells exogenously 

expressing either GFP or reelin. (D) Protein species detected by both 20E12 and the 

established G10 antibody in the brain homogenates of P4 wild-type or reeler mice. (E) Epitope 

mapping of the 20E12 antibody using different recombinant protein fragments of mouse reelin. 

Protein species representing recombinant reelin are indicated by arrows. 
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Figure 2. (A) Distribution of genotypes of 77 pups from crossing of DISC1 and reeler 

heterozygous mice, surviving until birth. The distribution was not Mendelian (χ2 p-value = 

0.009). There was no statistically significant interaction between DISC1 and reeler genotypes, 

however the results were suggestive enough that this might be seen in a larger sample (χ2 p-

value = 0.10). (B) Representative blots of full length reelin (arrow) and its processed forms in 

P0 mouse brain homogenates. In total 44 brains were prepared in this way, with post-mortem 

genotyping revealing them to consist of 13 WT brains, 17 Dhet, 6 Rhet and 8 DhetRhet. Full 

data in supplemental Fig. S1A&B. The 70 kDa DISC1 species likely represents a physiological 

breakdown product of human DISC1 which has been described previously (James et al., 

2004), including in post mortem human brain tissue (Leliveld et al., 2008) and the DISC1 

transgenic rat (Trossbach et al., 2016). For a review, see Soares et al. (2011).  (C) 
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Quantification of reelin levels in homogenates from all of these brains, showing both total reelin 

(full length and processed combined, light grey) and full length reelin alone (dark grey). (D) 

The effect of a DISC1 allele on the proportion of reelin present which is full length. (E) 

Representative blot of Dab1 levels, compared with actin, in the brain homogenates of crossed 

heterozygous reeler and DISC1 mice. Full data in supplemental Fig. S1C. (F) Quantification of 

Dab1 levels. (G) Western blot of phosphorylated Akt (serine-473) and total Akt. Full data in 

supplemental Fig. S1D. (H) Quantification of the ratio of phosphorylated to total Akt. WT: Wild-

type, Dhet: DISC1 transgenic heterozygote, Rhet: Reeler heterozygote, DhetRhet: 

Heterozygous for both the DISC1 transgene and reeler, *: p<0.05, **: p<0.01, ***: p<0.001. 
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Figure 3. (A) Western blot of recombinant reelin media which had been incubated for 18 hours 

with SH-SY5Y cells, in the presence of absence of doxycycline-driven recombinant DISC1 

expression and/or the ADAMTS inhibitor EGCG. Samples of recombinant reelin media and 

control media, which were incubated alongside the experiments but in the absence of cells, 

are shown for comparison. (B) Quantification of mean total reelin in the samples. (C) 

Quantification of the ratio of full length to processed reelin in this cell media. (D) Western blots 

of cell lysates and conditioned media from HEK293 cells expressing reelin, further transfected 

with DISC1 and/or ADAMTS-4. Note that the size discrepancy between the ADAMTS-4 seen 

in the media and in the cell lysate is due to the latter still containing its N-terminal pro domain, 

which is cleaved off prior to being exported from the cell. (E) Quantification of the ratio of full 

length to processed reelin in this cell media. (F) Quantification of mean total ADAMTS-4 in the 

samples in which it had been expressed, with or without DISC1. (G) Real time PCR results (n 

= 3) of cDNA from equivalent HEK293 cells transfected with DISC1 and ADAMTS-4 in the 
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same manner, shows no effect (H) Western blot of lysates from transgenic HEK293 cells which 

over-express ADAMTS-4, with or without transient transfection with DISC1. In this case, both 

the pro-domain containing ADAMTS-4 species and the active cleaved variant can be seen in 

the cell lysate. (I) Quantification of total ADAMTS-4 levels (both species), after normalisation 

to actin. *: p<0.05, **: p<0.01, ***: p<0.001.  
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Figure 4. (A) Lower levels of processed reelin are seen in media incubated for 48 hours (24-

72 hours in vitro) with cortical cultures from DISC1 transgenic rat embryos than from controls. 

Full length reelin (indicated by an arrow) is dimly visible but does not vary. Transgenic DISC1 

could be detected by Western blotting in the cell lysate. (B) Quantification of four independent 

tests, each comprising six wild-type and six transgenic internal replicates.  (C) No change in 

levels of processed reelin in media from neurons at 8 days in vitro (div). The higher order band 

is not detectable. (D) Presence of a subpopulation of reelin expressing cells in cultures after 1 

day in vitro. (E) These cells also express Ebf2. (F) These cells are negative for calretinin (image 

taken using the same capture settings as part G). (G) By 8 days in vitro these are no longer 

visible, but calretinin and reelin-positive interneurons are apparent. (H) Both reelin-positive cell 

populations contain transgenic DISC1, detected using human DISC1 specific antibody FFD5. 

Scale bars represent 20µm. 
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Abbreviations 

 

ADAMTS A disintegrin and metalloproteinase with thrombospondin motifs 

APP  Amyloid precursor protein 

Dab1  Disabled 1 

div  Days in vitro 

Dhet  DISC1 transgenic heterozygote 

DhetRhet DISC1 transgenic heterozygote/reeler heterozygote hybrid 

DISC1  Disrupted in schizophrenia 1 

Ebf2  Early B-cell factor 2 

Erk  Extracellular signal-regulated kinase 

EGCG  Epigallocatechin gallate 

GSK3  Glycogen synthase kinase 3 

ICC  Immunocytochemistry 

LIS1  Lissencephaly 1 (protein, encoded by PAFAH1B1) 

Rhet  Reeler heterozygote 

WB  Western blot 

WT  Wild type 

 

 


