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Abstract 

Addiction is characterized by compulsive drug seeking and taking despite the 

negative consequences. In the laboratory, addiction is studied as set of simple forms 

of behaviors (endophenotypes), some of which are locomotor sensitization (LS), a 

phenotype of the motor-activating effects and preferential consumption, a phenotype 

of rewarding effects. The aim of the thesis is to develop tests for inducing and 

quantifying cocaine (COC) and methamphetamine (METH) motor-activating and 

rewarding effect, and investigate genetic mechanisms underlying such neural 

plasticity. 

We developed and optimized two new methods, FlyBong for measuring motor-

activating effects, and a self-administration method. We show that repeated exposures 

to volatilized COC and METH induce LS in flies, and that flies prefer COC and METH 

containing food to regular food. Pharmacodynamics of COC and METH LS and 

preferential consumption depends on the dopamine transporter. Reduction of 

dopamine, serotonin and octopamine, did not completely abolish the locomotor 

sensitization to COC and METH, suggesting the involvement of other monoamines in 

this processes. Manipulation of dopaminergic and serotoninergic vesicular monoamine 

transporters (VMAT) using RNA interference (RNAi), indicated that locomotor 

sensitization and preference to COC and METH depend on functional VMAT.  

LS to COC depends on several circadian genes, period (per), cycle (cyc) and 

Clock (Clk), leads to high levels of reactive oxygen species (ROS) production and is 

susceptible to the exogenous redox perturbation. LS to METH depends only on one 

circadian gene, Clk, leads to lower levels of ROS and is less susceptible to exogenous 

redox perturbation. The motor-activation and rewarding effects of COC depend on the 

circadian gene per, while METH depends on Clk, indicating differential involvement of 

circadian genes in these two processes. Pre-treatment with H2O2 led to different effects 

on sensitivity and LS to COC and METH suggesting that H2O2 might function as a 

neuromodulator, and that its role is drug-specific.  

Here we developed new behavioral tests and described the effects of COC and 

METH on two forms of neuronal plasticity. Our new high throughput test for measuring 

LS is ideally suited for unbiased genetic screen or selection. We described likely 

circadian and redox influence on behavior that correlates with monoaminergic 
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regulation. We hypothesize that circadian genes and redox regulation work together to 

change the brain functioning after consumption of addictive drugs.  

Key words: Drosophila melanogaster, psychostimulants, neuroplasticity, 

circadian/redox feedback loops  
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Prošireni sažetak 

Jednostavna definicija ovisnosti podrazumijeva kompulzivno traženje i primjenu  

sredstva ovisnosti unatoč negativnim posljedicama koje ima za organizam. Ovisnost 

se kod laboratorijskih životinja proučava kao niz jednostavnih ponašanja 

(endofenotipova) upotrebom optimiziranih bihevioralnih testova koji moraju biti 

objektivni, reproducibilni i kvantitativni. Ovisnost o psihostimulansima (PS) kokainu 

(COC) i metamfetaminu (METH) se može razložiti na jednostavnija ponašanja 

povezana s motoričkim (senzitizacija) i nagrađujućim (preferencijalna konzumacija) 

učinkom. Cilj ovog doktorskog rada je ispitati utjecaj COC i METH na motorički i 

nagrađujući učinak povezan s genetskim promjenama koje dovode do neuralne 

plastičnosti primjenom novo razvijenih testova za induciranje i kvantifikaciju ponašanja. 

Tijekom mog doktorskog studija razvila sam i optimizirala novu metodu za 

mjerenje motoričke aktivnosti potaknute primjenom PS koju smo nazvali FlyBong. 

Upotrebom novog optimiziranog protokola „FlyBong“, utvrđeno je da akutno i 

opetovano izlaganje Drosophile volatiliziranom COC i METH inducira povećanje 

motoričkog odgovora. Istražena je farmakodinamička sličnost između mehanizma 

djelovanja COC i METH te utjecaj monoamina dopamina, serotonina i oktopamina na 

bihevioralni odgovor kod akutne i opetovane primjene PS. Testirala sam hipotezu da 

su cirkadijalni geni period, timeless, clock, cycle i pigment-dispersing factor uključeni 

u endofenotip senzitizacije na COC i METH. Senzitizacija potaknuta s COC nije 

prisutna kod per01, cyc01 i ClkJrk mutanata, dok senzitizacija na METH nije prisutna kod 

ClkJrk mutanata. Izmjerila sam utjecaj COC i METH na sistemske biomarkere redoks 

statusa: katalazu, superoksid dismutazu, vodikov peroksid i reaktivne kisikove vrste 

čime sam pokazala da COC sistemski inducira veći, a METH manji pomak 

oksidativnog statusa Testirala sam utjecaj predtretmana s anti- i prooksidansima na 

motorički odgovor kod akutne i opetovane primjene COC i METH, čime sam pokazala 

da antioksidansi utišavaju senzitizaciju na METH, dok kod COC senzitizacija nije 

prisutna. Istražila sam potencijalnu neuromodulatornu i oksido-redukcijsku ulogu 

vodikovoga peroksida povezanu s predtretmanom koji nije uzrokovao sistemski pomak 

oksidativnog statusa, ali je utjecao na endofenotip senzitizacije. Testirana je hipoteza 

korelacije broja cirkadijanih gena i osjetljivosti na redoks status u ovisnosti o PS. 

Nađeno je da PS koji ovisi o više cirkadijalnih gena te uzrokuje veću sistemsku redoks 

preturbaciju pokazuje veću osjetljivost na promjenu redoks statusa u endofenotipu 
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senzitizacije ako je pred tretman anti- ili prooksidativan, dok PS koji ovisi o manjem 

broju cirkadijalnih gena, uzrokuje manju sistemsku redoks preturbaciju te pokazuje 

manju osjetljivost na promjenu redoks statusa više orijentiranu na predtretman s 

molekulama manjeg antioksidativnog kapaciteta.  

Kako bi ispitala da li PS utječu ma motivaciju za konzumacijom optimizirala sam 

test samo-administracije (Capillary Feeding, CAFE) gdje mušice biraju između otopine 

šećera i otopine šećera pomiješane s PS. Ovim istraživanjem je nađeno da mušice 

kojima je ponuđen izbor između otopine šećera i otopine šećera pomiješane s PS 

pokazuju preferenciju prema otopini s PS, koja je posljedica nagrađujućeg efekta PS. 

Nađeno je da su procesi učenja i pamćenja povezani s periferijalnom konzumacijom 

te da će mušice preferencijalno konzumirati otopinu s PS unatoč dodatku supstance 

gorkog okusa. Ukoliko se mušicama koje su izložene PS nekoliko dana za redom, 

jedan dan ne ponudi PS te ih se nakon toga ponovno izloži izboru između otopine 

šećera i otopine šećera i PS, mušice će pokazivati jednaku ili veću preferenciju za PS 

kao što je bila prije perioda apstinencije. Istražen je utjecaj cirkadijalnih gena te 

receptora i prijenosnika povezanih s farmakodinamičkim djelovanjem COC i METH na 

nagrađujući učinak. Pokazala sam da se preferencijalna konzumacija COC i METH 

razlikuje po tipu cirkadijalnih gena koji na nju utječu, a neki od njih kontroliraju 

motoričku senzitizaciju. Ovi rezultati upućuju na mogući zajednički genetski 

mehanizam koji je u podlozi preferencijalne konzumacije, kao oblika nagrađujućeg 

utjecaja PS i motoričke senzitizacije. 

Ishodi mojeg doktorskog rada rezultirali su razvojem dvije nove objektivne i 

visokoprotočne metode za kvantifikaciju ponašanja  Drosophile koja će omogućiti 

naredna istraživanja genetske osnove neuralne plastičnosti izazvane PS korištenjem 

metode genetskog probira ili genetske selekcije. Daljnja istraživanja 

cirkadijalnih/redoks povratnih spregi potaknutih primjenom COC i METH trebala bi 

pomoći u razumijevanju mehanizma kojima PS mijenjaju neuronske mreže, te 

usmjeravanju u nove potencijalne farmakološke smjerove razvoja lijekova za 

prevenciju i liječenje ovisnosti. 

Ključne riječi: Drosophila melanogaster, psihiostimulansi, neuralna plastičnost, 

cirkadijalne/redoks povratne sprege 
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1. INTRODUCTION 

1.1. Substance addiction 
 

Addiction is a complex brain disorder characterized by neuroplasticity, or 

changes in the genes and proteins that regulate brain functioning. Neuroplasticity is a 

change in the neural pathways and synapses of the brain (Kauer 2007), and in respect 

to addiction it is related to changes in the reward circuits of the brain (Volkow and 

Morales 2015). 

 
Drugs induce the neurochemical and behavioral phenomenon of sensitization, 

which refers to a progressive increase in the effect of a drug with repeated treatments 

(Robbinson and Berridge 2000, Robbinson and Berridge 2008). In animal models, an 

acute response to psychostimulants is described as sensitivity, while repeated 

exposures to the same amount of a psychostimulant can induce a stepwise increase 

in locomotion or locomotor sensitization (Robbinson and Berridge 2000). In 

mammalian studies, the sensitization endophenotype is studied as a mechanism by 

which repeated exposure to a drug-related cue results in a progressive amplification of 

the response, craving for the drug (Steketee and Kalivas 2011).  

 
The effects of drugs of abuse lead to compulsive drug seeking and taking 

behavior, as a result of craving which the drugs induce (Robbinson and Berridge 1993). 

When animals are offered choice between a drug and a non-drug liquid, they show 

preference to the drug-containing liquid. Animals self-administer such drugs more 

robustly if the drug is associated with a cue. Since the rewarding effect of the drugs 

engage dopaminergic neuromodulation, the processes of learning and memory are 

also involved in addiction (Nestler 2013).  

 
After a period of abstinence from the drug, a drug-related cues can cause 

activation of mechanisms of positive reinforcement and the animal relapses, with their 

preference for the drug being the same as, or higher than, it was before the period of 

abstinence (Berridge et al. 2009). If the drug is associated with negative reinforcement 

(e.g. electric shock), addicted animals will consummate drug in spite of negative 

consequence induced by the drug. 
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1.1.1. Animal models and endophenotypes of psychostimulant addiction 

 

Drug addiction is a complex behavior that is usually studied in animal models 

through use of endophenotypes, relatively simple and quantifiable phenotypes related 

to the addiction (Kaun et al. 2012). Endophenotypes studied in model organisms range 

from response to an acute drug dose to more complex behaviors such as self-

administration and relapse. The higher is the complexity of the behavior which is 

induced and measured, the greater is the relevance of the model for human study. On 

the other hand, simpler forms of behavior can be more easily induced and measured, 

which makes them more convenient for high-through genetic screening and 

understanding the mechanisms that govern them. 

 
Rats and mice have provided crucial insights into the mechanisms underlying 

drug-related behaviors (Sanchis-Segura and Spanagel 2006), but they are not ideal 

for unbiased, forward genetic approaches aimed at identifying novel and unpredicted 

genes or mechanisms. More ethical use of animals in scientific testing is refers to 3Rs 

principle (replacement, reduction and refinement). The model organism Drosophila 

melanogaster, a fruit fly, is great example of 3Rs principle, replacing the use of higher 

laboratory animals in scientific experiments . Firstly, Drosophila uses many of the same 

neurotransmitters as mammals and has similar mechanisms of neurotransmitter 

storage, release and recycling. Drosophila offers a variety of powerful molecular-

genetic methods for the study of novel mechanisms using forward genetics (Owald et 

al. 2015). Additionally, flies are easy and inexpensive to grow in laboratory conditions, 

with a developmental cycle of around 14 days. Drosophila were used for many years 

to identify the molecular and neural mechanisms that regulate acute drug responses 

(McClung and Hirsch 1998), while recently developed assays that measure drug self-

administration and reward now allow the analysis of more complex endophenotypes in 

flies (Devineni and Heberlein 2009). 

 

1.1.1.1. Sensitivity and locomotor sensitization 
 

Drosophila, in common with other animal models, shows sensitivity (SENS), to 

an acute psychostimulant (PS) dose by increasing locomotor activity. This behavioral 

endophenotype has been studied in flies, in response to cocaine (COC) (McClung and 

Hirsch 1998) and methamphetamine (METH) (Andretic et al. 2005, Van Swinderen and 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Heberlein%20U%5BAuthor%5D&cauthor=true&cauthor_uid=20005106
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Andretic 2011). Depending on the dose, administration of volatilized COC (vCOC) may 

induce different types of behavior in flies, ranging from increased locomotor activity at 

lower doses, stereotypical behaviors (buzzing and spinning in  circles) at moderate 

doses, to akinesia or death at higher doses. Oral administration of METH promotes 

activity and reduces sleep, indicating motor activating and arousing effects. In 

mammals, METH induces behaviors similar to those observed with COC (Hyman 

1996), but effects of volatilized METH (vMETH) have not been described in flies.  

Locomotor sensitization (LS) represents increase in the amount of locomotor activity 

to repeated doses of the same amount of PS. It is more complex behavior compared 

to SENS, and engages mechanisms of neuronal plasticity. While flies develop LS to 

repeated exposures to vCOC (McClung and Hirsch 1998), it has never been shown if 

flies increase amount of locomotion and develop LS to vMETH. 

 
Over the past decades, a couple of behavioral assays for induction and 

quantification of SENS and LS in flies have been developed. The assay published by 

McClung and Hirsh in 1998 was based on volatile COC administration, using freebase 

COC (form of COC that volatilizes at low temperature). COC was volatilized from a 

heated filament in a vial, after which the flies were transferred to a video arena where 

the behaviors were filmed. Behavioral response was then scored using a descriptive 

scale after analyzing the video recording, and data were represented as a population 

response to either single or repeated exposures. This assay had a few disadvantages. 

Firstly, the flies experienced stress during transfer from the cultivation vial to the 

chamber for COC administration, and again during transfer to the video arena. The 

amount of COC delivered to each individual fly was not determined, and could vary 

between experiments, although there was an attempt to improve this method using a 

graphical arch airbrush (Lease and Hirsh 2005). Furthermore, scoring of the behavior 

was time consuming, subjective and population based. In spite of this, the assay had 

the advantage that all flies were exposed to COC at the same time, and that both SENS 

and LS could be tested using the same assay. A similar assay was developed by 

Bainton et al. in 2000. This assay used volatilized administration of COC as previously 

described, but quantification of the behavior after administration was automated, using 

the automated video analysis software Dynamic Image Analysis System (Solltech 

Inc.). The disadvantage of this assay is in ability to only score SENS in flies and not 

LS.  
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There was an attempt to automate vCOC administration to flies, which allowed 

simultaneous exposure of vCOC to all flies in the assay (Gakamsky et al 2013). The 

authors tried to minimize the environmental perturbation during exposure to the volatile 

drug by transferring flies to the video arena 2 hours before the assay. This habituated 

the flies to the novelty of the arena and to the presence of the other flies. The drug 

delivery system consisted of a chamber with multiple wire filaments that volatilized 

COC, which was then delivered to the flies in the arena using an air pump. Since 

neither food nor water was supplied to the fly during the entire 3 hours long experiment, 

there were possible effects of starvation and dehydration on the fly behavior. In 

addition, while the response to vCOC was quantified by automated video analysis 

software, it was still population based.  

 
The crackometer assay was developed to measure the ability of flies exposed 

to vCOC to climb quickly to the top of a column, given their innate propensity for 

negative geotaxis (Heberlein et al. 2009). Compared to previous assays, crackometer 

provided an easily quantifiable score enabling a high-throughput approach. Ultimately, 

it was used in genetic screens that lead to discovery of new genes involved in 

sensitivity, but not in LS (Heberlein et al. 2009).  

 
Finally, Dimitrijevic et al. in 2004 developed an assay in which COC was 

administered to the flies by injection, which provided an objective quantification of 

behavior using the DAM (Drosophila activity monitoring) system, which allows for 

quantification of locomotor activity of large numbers of flies at the same time. The 

locomotion is quantified as a number of times a fly crosses an infrared beam in the 

middle of the tube in a given time interval. The disadvantage of injection method was 

that the CO2 anesthesia during injection protocol could have an effect on behavior after 

PS administration.  

 
All of the mentioned assays had shortcomings in some of the following features: 

reproducibility, objectivity, throughput, and amount of COC to which flies were exposed 

or level of animal handling. The majority of them lacked adequate controls and their 

correlation to COC-exposed animals. They include complex data analysis that are 

population based, and therefore an inconvenient base for forward genetic screening. 
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Additionally, no data on vMETH induced LS in flies has published so far, as has been 

for vCOC (Rothenfluh and Heberlein 2002).    

 
The importance of using data analysis based on individual animals has been 

demonstrated in rats, as not all rats will show a response to an acute dose of COC, or 

sensitization on repeated administration (Gulley et al. 2003). Thus, in the wild type (wt) 

populations there are always some individuals that do not respond to COC. The same 

was also found for METH (Kamens et al. 2004.). Furthermore, population based 

approaches provide less information, compared to individual-based approaches, as 

some information is lost or misinterpreted. Therefore, this work has focused on the 

development of a new method that would be reproducible, objective, high-throughput, 

with minimal animal handling and with possibility to analyses data at both the 

population and individual level.  

 
1.1.1.2. Rewarding effect of psychostimulants  
 

Most of the work done to date on the reward effect in flies lies in the field of 

learning and memory. This was possible because flies associate odors with food and 

food-related odors, and these odors can be used as cues for food reward (appetitive) 

or aversion (repulsive) stimuli (Tempel et al. 1983, Schwaerzel et al. 2003). 

 
One of the more complex endophenotypes in response to COC, compared to 

SENS and LS, is self-administration. While testing of SENS and LS in flies, involves 

administration of COC by the researcher, in the self-administration approach the 

animal chooses when to consume the drug, likely because of the reward effect of the 

drug. This approach was first introduced in experiments based on ethanol preference 

(Devineni and Heberlein 2009). There was potential bias in the self-administration of 

ethanol, because of evolutionary attractiveness of the ethanol associated with ethanol-

containing food with caloric value. However, self-administration enabled a new 

behavioral endophenotype to be studied in Drosophila addiction research.   

 
In the pioneering work on ethanol self-administration, ethanol consumption was 

measured using a two-choice assay, similarly to the two bottle choice assay used in 

rodent studies. Flies have shown preference for ethanol in dose-dependent way, with 

the preference persisting in the absence of olfactory or gustatory input (Devineni 

and Heberlein 2009). In the same study, it was found that flies have two additional 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Heberlein%20U%5BAuthor%5D&cauthor=true&cauthor_uid=20005106
https://www.ncbi.nlm.nih.gov/pubmed/?term=Heberlein%20U%5BAuthor%5D&cauthor=true&cauthor_uid=20005106
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addiction-like behaviors. Flies overcame an aversive stimulus, the bitter-tasting 

compound quinine, in order to consume ethanol, and they rapidly return to high levels 

of ethanol consumption after ethanol deprivation, modelling a relapse-like effect 

(Devineni and Heberlein  2009).   

 
In summary, SENS and LS were investigated in terms of the response of flies 

to COC administration (Wolf 1999), however to date there are no published data on 

COC or METH preferential consumption in flies.  

 

1.2. Psychostimulant-induced neuronal plasticity 

 

The exact mechanism by which addictive drugs change the brain is still 

unknown (Sulzer 2011), but there is evidence that the likelihood of developing 

addiction is dependent on sources of reinforcement, neuroadaptive and neurochemical 

changes, which ultimately lead to the brain reward system (Koob et al. 1998).  

 
Different psychostimulants have different molecular targets in the central 

nervous system (CNS), but they all lead to increases in extracellular concentrations of 

dopamine (DA) in specific regions of the brain (Laakso et al. 2002). In mammals, two 

transcription factors, CREB (cAMP response element binding protein) and ∆FosB are 

induced in the reward region of brain (the nucleus accumbens) following DA interaction 

with the dopamine 1 like receptor on the postsynaptic neuron, and contribute to drug-

induced changes in gene expression. ΔFosB is a molecular switch, which gradually 

converts acute drug responses into relatively stable adaptations that contribute to the 

long-term neural and behavioral plasticity that underlies addiction (Nestler et al. 2001). 

CREB mediates a form of tolerance and dependence, in contrast to ∆FosB, which 

instead mediates a state of relatively prolonged sensitization to drug exposure (Nestler 

2004).  

 
In Drosophila, neuronal plasticity is under the control of an immediate early 

transcription factor (AP-1), a heterodimer of the proteins Fos and Jun (Sanyal et al. 

2002). While the Drosophila and human Jun proteins have the same phosphorylation 

site, Drosophila Fos contains only one domain to be common to all mammalian Fos 

family, sharing only moderate similarity at the primary sequence level (Kockel et al. 

2001). AP-1 was found to be involved in learning behavior in rodents, developmental 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Heberlein%20U%5BAuthor%5D&cauthor=true&cauthor_uid=20005106
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plasticity in insect models, and COC addiction in mammals (McClung and Nestler 

2003).  

 
Based on the minimal similarity between Drosophila Fos and the mammalian 

Fos gene family, synaptic plasticity induced by PS in this work will be focused on 

monoaminergic neurotransmission, circadian genes and ROS-induced by DA and PS 

oxidative metabolism, as these processes are more conserved between Drosophila 

and mammals.  

 

1.2.1. Monoaminergic neurotransmission 

 

Drosophila use many of the same neurotransmitters as mammals including 

gamma-aminobutyric acid (GABA), glutamate and acetylcholine, as well as some of 

the same monoamines including DA, serotonin and histamine (Martin and Krantz 

2014). Additionally, flies possess octopamine, a fly analogue of noradrenaline, and 

trace monoamine tyramine.  

 
COC and METH have different pharmacokinetics and different 

pharmacodynamics mechanisms of action, primarily in relation to DA neurons (Hyman 

1996). As a result, the following chapters will be focused on COC and METH 

pharmacodynamics in mammals, specifically in dopaminergic neurons, with some 

analogies to Drosophila. The influence of mutation or pharmacological inactivation of 

targets for COC and METH on behavioral endophenotypes of self-administration and 

locomotor sensitization will also be discussed.  

 
1.2.1.1. Cocaine and methamphetamine pharmacokinetics  
 

The time required for the maximal effect of COC and METH differs as a result 

of their mode of the administration (Pandey and Nichols 2011). In humans, intravenous 

administration (IV) of COC causes an onset of action at 10-60 minutes, with the peak 

around 3-5 minutes after administration and total duration of 20-60 minutes. In 

comparison, inhalation of COC causes onset of action at 3-5 seconds, peak at 1-3 

minutes, and duration of 5-15 minutes (Lange and Hillis 2001). In contrast, oral 

administration of METH in humans has a half-life of 6-12 hours, and the time before 

maximal effect is 1-3 hours (Baselt 2004). These data suggest not only different COC 
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and METH pharmacokinetics, but also varied onset of action depending on the method 

of administration.  

 
1.2.1.2. Cocaine and methamphetamine pharmacodynamics  
 

In mammals, DA is synthesized in the cytoplasm from tyrosine by tyrosine 

hydroxylase (TH) and DOPA decarboxylase (DDC), after which it is packed in vesicles 

by the vesicular monoamine transporter (VMAT) and stored prior to release in the 

synaptic cleft (Muñoz et al. 2012, German et al. 2015). In the basal state of the 

presynaptic neurons, when it becomes polarized, it starts to release DA by vesicular 

exocytosis (Figure 1A). Released DA in the cleft then binds to presynaptic and 

postsynaptic receptors. After the signal is transmitted to the postsynaptic neuron, DA 

is removed from the cleft via dopamine transporter (DAT) on the presynaptic neuron. 

It is then either repacked into vesicles by VMAT, or degraded by monoamine oxidase 

(MAO) and catechol-O-amine transferase  (COMT) into inactive components (Figure 

3), such as homovanillic acid (HVA) through the intermediate products 3,4-

dihydroxyphenylacetic acid (DOPAC) or 3-methoxytyramine (3-MT) (Muñoz et al. 

2012.).  

 
Both processes, dopamine release and reuptake, are followed by DAT and VMAT 

integration on the presynaptic neuron membrane (German et al. 2015, Kahlig and Galli 

2003). When DA is cleared from the synaptic cleft, early endosomes (EE) deliver DAT 

to the presynaptic neuron membrane trough recycling endosomes (RE). Claritin-

coated vesicles (CCV), meanwhile, remove DAT from the membrane once all DA is 

removed from cleft and sent to either the early or late endosome and finally to the 

lysosome. VMAT, incorporated on presynaptic neuron membrane after releasing DA, 

is also removed by CCV.    

 
a) COC mechanism of action  

 
COC blocks reuptake of DA from the synaptic cleft to the presynaptic neuron by 

binding to DAT (Espana and Johnes 2013). Through blocking of DAT, the 

concentration of DA in the synaptic cleft becomes elevated, in parallel to an increase 

of DAT integration in order to compensate for elevated levels of DA (German et al. 

2015). Simultaneously, the number of vesicles carrying additional DA in the cytoplasm 

increases, with a reduced number being integrated into the membrane (Figure 1C). 
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Increased levels of DA also affect dopamine receptors (DR) at the postsynaptic neuron, 

causing reduced integration into the membrane. Together, the increased DA in the 

cleft, and the blockade of DAT, stimulate the degradation of DA by MAO and COMT 

(Figure 3). This reduces postsynaptic neuron polarization, which causes an increase 

in ROS (Meiser et al. 2013), as it will be discussed in more detail later. COC binds 

differentially to the dopamine, serotonin, and norepinephrine transport proteins and 

directly prevents the re-uptake of dopamine, serotonin, and norepinephrine into pre-

synaptic neurons, subsequently elevating the synaptic concentrations of each of these 

neurotransmitters. 

 

 

 
Figure 1. Basal state A) and pharmacodynamics of B) METH and C) COC in DA neuron. Blue – 

dopamine transporter (DAT), red – vesicular monoamine transporter (VMAT), green – dopamine (DA), 

CCV-clathrin-coated vesicle, EE- early endosome and RE – recycling endosome. (German et al. 2015). 

 

b) METH mechanism of action  

 

In contrast to COC, METH enters the presynaptic neuron by diffusion through the 

membrane. Once in the cytosol, METH binds to VAMT and reverses its mechanism, 

causing depletion of DA stored in the vesicles (Figure 1B). This process causes 

elevated DA in the cytosol, and reduced DA in vesicles. Translocation of DA from the 

presynaptic neuron to the cleft is then mediated by DAT, whose function is reversed, 

while VMAT-mediated vesicular transport is still occurring. DAT integration into the 

membrane may also occur, but this has not been demonstrated in vivo. However, a 

reduction of VMAT synaptic vesicles within the cytoplasmic fraction has been shown. 
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Additionally, METH causes a decrease in DA metabolism catalyzed by MAO, as METH 

can inhibit MAO, forcing DA removal from the cleft through autoxidation (Figure 3). 

 
1.2.1.3. Drosophila DA anabolism, signal transduction and catabolism  
 

a) Anabolism  
 

In Drosophila, as in mammals, conversion of tyrosine to L-DOPA is mediated by 

tyrosine hydroxylase (TH), after which L-DOPA is converted to DA by DOPA 

decarboxylase (DDC). Blocking of dopamine synthesis using the TH inhibitor, 3-iodo-

tyrosine (3IY) leads to a reduced effect of COC (Bainton et al. 2000). Decreased DA 

synthesis can be restored by feeding flies with L-DOPA or DA (Riemensperger et al. 

2011). Ingested DA can restore the concentration and function of DA in the nervous 

system of flies (Budnik et al. 1989), which is in direct contrast to mammals where 

supplemental DA cannot cross the blood-brain barrier (BBB).  

 
b) Storage and release 

 
DA is synthesized in the cytoplasm and stored into synaptic vesicles 

(Fleckenstein et al. 2009, German et al. 2015). Transport of DA across the vesicle 

membrane is mediated by VMAT. The Drosophila isoform of VMAT (dVMAT-A) is 

expressed in both dopaminergic and serotonergic neurons. Reserpine, a drug that 

blocks mammalian VMATs, is also effective in Drosophila and has been used to inhibit 

DA signaling in vivo (Bainton et al. 2000). Flies pre-treated with reserpine, did not 

display sensitization to repeated COC administration (Bainton et al. 2000).  

 
Flies mutant for dVMAT-A exhibit numerous behavioral abnormalities (Simon et 

al. 2009), although some of these defects may be due to serotonin and octopamine, 

since VMAT packages these monoamines in addition to DA. VMAT2 mutant 

heterozygote mice are hypersensitive, but do not show sensitization to COC, while 

acute exposure to METH increases their locomotion as is the wt animals (Wang et 

al.1997). Repeated METH exposures in VMAT2 mutant heterozygote mice lead to 

delayed LS (Fukushima et al. 2007) and reduction in reward effect of METH, when 

compared to wt mice, while the COC reward effect remains intact (Takahashi et al. 

1997). 
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Overexpression of dVMAT-A in flies induces spontaneous stereotypic grooming 

behavior and locomotion, effects that can be reversed by blocking dVMAT-A activity or 

by administration of a dopamine receptor antagonist, such as COC. In addition, 

dVMAT-A overexpression decreases the fly's sensitivity to COC, suggesting that the 

synaptic machinery responsible for this behavior may be down-regulated by dVMAT-A 

overexpression (Chang et al. 2006). It was found that COC, like METH, rapidly alters 

VMAT, suggesting that alterations in cytoplasmic DA concentrations may contribute to 

stimulant-induced changes in vesicular DA uptake (Brown et al. 2001). 

 
c) Signal transduction 

 
Signal transduction involves binding of DA in the synaptic cleft to the postsynaptic 

dopamine receptor. In Drosophila four G-protein-coupled DA receptors have been 

identified: two D1-like receptors (DopR and DopR2) and one D2-like receptor (D2R). 

Similar to humans, Drosophila D1-like receptors act through activation of the cAMP 

pathway, while D2-like receptors inhibit this pathway (Yamamoto and Seto 2014).   

 

 

 
Figure 2. Scheme of DA signal transduction and recycling in wt flies, dumb2 and fmn mutants 

(Faville et al. 2015). dumb2 is a hypomorphic allele of the dDA1 receptor (also called DopR), fmn is 

shorten from fumin (insomniac in Japanese) strain that contains a mutation in the Drosophila dopamine 

transporter gene (dDAT).  

 

Mutations in D1 and D2 receptors block locomotor hyperactivity (Tella 1994) and 

self-administration (Bergman et al. 1990) of COC in mammals. The Drosophila D1 like 

receptor mutant dumb has decreased DA in the synaptic cleft causing the mutants to 
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sleep more and have lower learning and memory scores (Figure 2). dumb mutants also 

fail to increase locomotor activity after COC exposure (Lebestky et al. 2009).  

 
Blocking of D1 and D2 receptors with an antagonist in mammals has been shown 

to reduce METH self-administration (Brennan et al. 2009), while mutation in the D1 

receptor lowers sensitivity to METH (Xua et al. 2000). 

 

d) Reuptake and metabolism 
 

In order to maintain proper function after the signal transduction, DA needs to be 

cleared from the synaptic cleft. Removal of DA from the cleft can occur through its 

reuptake into the presynaptic neuron via DAT (Zahniser and Sorkin 2004), or by 

metabolism into inactive compounds (Figure 3).  

 
A mutation in Drosophila DAT named fumin (fmn), causes elevated levels of DA 

(Figure 2), increase in basal activity and decrease in sleep (Faville et al. 2015). In 

mammals, DAT mutants do not show sensitivity to acute doses of COC, or LS after 

repeated COC exposures (Hall et al. 2009). Mutation in DAT did not eliminate the 

reward effects of COC in the conditioned place preference (CPP) or self-administration 

paradigms in mammals (Rocha et al. 1998, Sora et al. 1998). Additional studies have 

shown that mutations in the serotonin transporter (SERT) and DAT eliminated the 

reward effects of COC in the CPP (Sora et al. 2001). Mutation in DAT did not affect the 

response to acute METH exposure, while repeated exposures to METH delay and 

attenuate LS in mammals (Fukushima et al. 2007).  

 

DA synthesis, secretion, and signaling is conserved between Drosophila and 

mammals, but degradation of DA differs significantly because direct orthologs 

of MAO and COMT genes have not been identified in flies (Paxon et al. 2005). 

However, the DA oxidative products DOPAC and HVA have been detected in 

Drosophila, suggesting that an analogue pathway may exist in flies (Paxon et al. 2005). 

Monoamines in Drosophila could be metabolized by dopamine N-acetyltransferase, 

also known as arylalkylamine N-acetyltransferase (aaNAT) (Paxon et al. 2005). Flies 

with reduced aaNAT activity show defects in sleep homeostasis, a phenotype that is 

affected by aberrant DA signalling (Brodbeck et al. 1998). 
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Figure 3. Dopamine degradation pathway (Muñoz et al. 2012). 

 

1.2.1.4. Involvement of other monoamines  
 

In Drosophila, DA is not the only monoamine to be involved in the mechanisms 

of neuronal plasticity induced by drugs. Tetanus toxin light chain (TNT) expressed in 

dopamine and serotonin neurons of living flies blocked behavioral sensitization to 
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repeated COC exposures (Li et al. 2000). Flies that lack both tyramine and octopamine, 

as a result of mutation in tyramine decarboxylase-encoding genes (TDC), have 

dramatically reduced basal locomotor activity levels and hypersensitivity to acute COC 

exposure (Hardie et al. 2007). Flies with a null mutation in the tyramine-β-hydroxylase 

gene, which is responsible for conversion of tyramine to octopamine, produce low 

levels of octopamine and high levels of tyramine, display normal locomotor activity and 

COC responses (Hardie et al. 2007). Tyramine has also been implicated in COC 

sensitization (McClung and Hirsh, 1999).  

 
Taken together, these results indicate that the dopaminergic, serotonergic 

systems and the trace-amine tyramine mediate acute and repeated cocaine-induced 

behaviors in flies.  
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1.2.2. Circadian genes  

 

The circadian rhythmicity with a period of around 24 hours is result of an 

endogenous biochemical oscillator (circadian clock) that cycles with a stabile period 

and phase, and is present in all plants and animals. Circadian clock inputs, such as 

light or food, modulate circadian clock outputs such as locomotor activity, metabolism 

and neuronal plasticity (Allada and Chung 2010).  

 
Pleiotropy of the circadian genes, and their involvement in processes of 

neuronal plasticity induced by PS, were first identified in flies (Andretic et al. 1999), 

with the same endophenotype later being confirmed in mice (Abarca et al. 2002). 

These findings drew considerable attention towards the importance of finding a 

possible connection between development of drug addiction and the role of circadian 

genes in that process (Falcón and McClung 2010, Logan et al. 2014). The primary 

target of PS is the monoaminergic system, whose functioning has been shown to be 

associated with circadian genes (McClung 2007). The relationship between the 

circadian and reward systems is based on the effect of drugs on the clock genes, and 

the effect of clock genes on genes involved in neuronal plasticity (Parekh and McClung 

2016, Parekh et al. 2015), with a focus primarily on DA. Perturbations in DA synthesis 

do not appear to have a significant impact on circadian locomotor activity rhythms per 

se, but do have an influence on general locomotor activity levels (Hanna et al. 2015). 

 
1.2.2.1. The circadian clock of Drosophila 
 

Out of the 100,000 neurons in the brain of Drosophila, only 150 are clock neurons 

and capable of autonomous circadian functioning. The simplified circadian clock in 

Drosophila consists of five major genes and proteins: period (per), timeless (tim), 

Drosophila clock (dClk), cycle (cyc) and double-time (dbt). Regulation of the circadian 

clock is under the transcriptional and translational PER/TIM and CLK/CYC negative 

feedback loops (Peschel and Helfrich-Förster 2011, Tataroglu and Emery 2014).  

 
Unlike flies, the circadian clock of mammals has three copies of the per gene, Per1, 

Per2 and Per3, while the mammalian analogue to Drosophila tim is cryptochrome (cry), 

and the mammalian analogue to Drosophila cyc is Bmal1 (Yu and Hardin 2006).  
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a) PER/TIM negative feedback loop 

  
During daytime, the protein heterodimer CLK-CYC acts as a transcription factor of 

the period (per) and timeless (tim) genes. In the cytosol PER and TIM proteins activate 

cellular mechanisms of their dimerization and degradation. The PER-TIM heterodimer 

is translocated from the cytosol to the nucleus early in the evening, causing CLK-CYC 

phosphorylation and inhibition of their transcription (Figure 4). All these processes are 

under control of other molecules such as light-induced cryptochrome (CRY) and 

double-time (dbt) to ensure stabile circadian period and phase.  

 

 

Figure 4. Scheme of PER/TIM negative feedback loop. 1) Binding of the CLK-CYC dimer to the E-

box of the per and tim genes. 2) PER and TIM dimerization in the cytosol. 3) Degradation of TIM by 

light-induced CRY. 4) Degradation of PER by DBT phosphorylation. 5) Translocation of PER-TIM into 

the nucleus and 6) PER-TIM inhibition of their own transcription. 

 

b) CLK negative feedback loop 

 

Late in the day, or early at night, the CLK-CYC dimer is located in nucleus and acts 

as a transcription factor for Par domain protein 1ε (PDP1ε) and Vrille (Vri) (Cyran et al. 

2003). Vri is a negative transcription factor for clk and reduces CLK synthesis. PDP1ε 

is a clk positive transcription factor, which induces CLK synthesis. Once synthesized, 

CLK binds to CYC and a new cycle of the feedback loop starts (Figure 5). 
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Figure 5. Scheme of the CLK negative feedback loop. 1) CLK-CYC binds to the E-box of Par domain 

protein 1ε (PDP1ε) and Vrille (Vri). 2) Binding of PDP1ε to the V/P-box of Clk is facilitated by activator 

(Act) and induces CLK synthesis. 3) Binding of Vri to the V/P-box of Clk is facilitated by activator (Act) 

and inactivates CLK synthesis. 4) CLK and CYC bind together and 5) translocate from the cytoplasm to 

the nucleus to act as transcription factors in new cycle of the feedback loop.  

It has been shown that the Drosophila mutants per01, cyc01, ClkJrk and dbt do not 

develop LS to repeated COC administration, while their response to acute exposure 

was same as in wt flies (Andretic et al. 1999). Because LS of tim mutants was the same 

as in wt flies, it suggested that circadian genes regulate COC-induced LS through a 

different mechanism than the one for circadian regulation. The same phenotype was 

also observed in mice (Abarca et al. 2002). Mice with a mutation in Per1 do not develop 

LS to repeated COC injections, while Per2 mutants, in contrast, show hypersensitivity 

to the same treatment. Reward effect of COC, as measured by the CPP assay was 

abolished in Per1 mutant but present in Per2 mutant mice. ClockΔ19 mutant mice have 

normal COC sensitization and an increased preference for cocaine (Abarca et al. 

2002).  

 
c) Pigment-Dispersing Factor Signaling 

 

Despite the evidence supporting a synchronizing function of pigment-dispersing 

factor (PDF) within the clock neuron network (Edery et al. 2000), other observations 

suggest a more complex role for PDF in circadian timekeeping (Shafer et al. 2014). 
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One possible mechanism is through PDF feedback to suppress CLK activity and 

induce its own transcription (Mezan et al. 2016, Mertens et al. 2005).  

 
 The pdf01 mutants are arrhythmic, indicating that the ability to produce endogenous 

circadian rhythms is dependent on PDF (Renn et al. 1999). The pdf01 mutants, on the 

other hand, show normal sensitivity to COC (Heberlein et al. 2009, Tsai et al. 2004). 

 
After method optimization, we have used pdf01 and tim01 mutants as positive 

controls, while per01, cyc01 and ClkJrk were used as negative controls for vCOC induced 

LS. Same endophenotype was tested on vMETH using per01, cyc01, ClkJrk, pdf01 and 

tim01 mutants.  

 
1.2.2.2. Circadian genes and monoamine synthesis 
 

In mammals, DA neurotransmission is under the influence of circadian genes in 

presynaptic neurons, largely because they can act as transcription factors for proteins 

involved in DA synthesis and degradation (Figure 6). Several mechanisms have been 

proposed through which circadian genes may influence rhythmicity, namely DA 

synthesis trough TH, DA release trough D2 auto-receptors or DA degradation by MAO.   

 

 

 
Figure 6. Possible mechanism of circadian genes influence on DA synthesis, release and 

degradation. COMT - Catechol-O-methyl transferase; D1 - DA receptor type 1; D2 - DA receptor type 

2; DA - dopamine; DAT - DA transporter; DDC - DOPA decarboxylase; DOPAC - 3,4-

dihydroxyphenylacetic acid; E-box - non-canonical E-box; HVA - homovanillic acid; MAO - monoamine 

oxidase; ROR - retinoid-related orphan receptor; RORE - ROR response element; TH - tyrosine 

hydroxylase; TYR - tyrosine. Mammalian model (Golombek et al. 2014). 
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Reciprocal regulation has also been observed where expression of clock genes 

per and cry is affected by DA, through the activation of D2 receptors on the 

postsynaptic neuron (Golombek et al. 2014).  

 
1.2.2.3. Circadian genes and redox changes 
 

Numerous lines of evidence strongly suggest interaction and relationship 

between oxidative stress and circadian rhythms (Fanjul-Moles and López-Riquelm 

2016). Reactive oxygen species can be produced in cells endogenously as a by-

product of mitochondria metabolism or induced environmentally by exposure to ultra 

violet (UV) light or chemical pollutants. Cellular concentrations and activity of 

antioxidant enzymes and other protective small molecules have been found to have 

circadian rhythmicity (Díaz-Muñoz et al. 1985). Circadian genes contain an 

evolutionary conserved PAS (Per: period; ARNT: aryl hydrocarbon receptor nuclear 

transporter; Sim: single-minded protein) domain. PAS is a modular domain consisting 

of PAS sensor (input) domains that can detect physical and chemical stimuli, such as 

oxygen, redox potential or light. PAS sensor regulates the activity of an effector 

domain, which can include catalysis or DNA binding (Möglich et al. 2009). It has been 

reported that Drosophila per01 mutants show elevated oxidative stress (Krishnan et al. 

2008), while elevation of ROS was reported for mice lacking clock protein BMAL1 

(Kondratov et al. 2006). Drosophila circadian mutants per01, cyc01, ClkJrk and dbt do 

not develop LS to repeated COC administration (Andretic et al. 1999), while METH-

induced expression of per gene in mice (Nikaido et al. 2001) is followed by an increase 

in ROS (Miyazaki and Asanuma 2008). It is therefore reasonable to suggest that 

circadian genes expression is under the regulation of ROS and that in this scenario, 

ROS represent a positive transcription factor. 

 

1.2.3. Psychostimulant induced oxidative stress 
 

Imbalance in cell redox status, caused by increased level of oxidants, leads to 

oxidation of proteins, lipids or DNA, and ultimately causes cell dysfunction. COC and 

METH induce redox imbalance (Figure 7) by producing ROS through auto-oxidation or 

enzyme oxidative metabolism of monoamines, primary DA (Miyazaki and Asanuma 

2008), and their oxidative metabolites ultimately causing mitochondrial dysfunction 

(Cunha-Oliveira et al. 2013).   
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Figure 7. ROS formation induced by COC and METH. A) Central nervous system cell. 1) COC 

induced release of DA 2) METH increases intracellular DA. DA can be 3) oxidized by MAO to form 

DOPAC and H2O2 or 4) auto-oxidized to form H2O2, superoxide (O2
.-) and reactive dopamine quinones 

(DAQ). Through the influence of the mitochondria respiratory chain O2
- can be produced 5) and cause 

overstimulation of N-methyl-D-aspartate (NMDA) glutamate receptors 6). Additional sources of ROS 

include xanthine oxidase 7) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 8). B) 

Cellular antioxidant system.1) Superoxide dismutase (SOD) converts superoxide to H2O2, which is 

further converted to H2O through 2) catalase (CAT) or 3) glutathione peroxidase (GPx), by using 

glutathione regenerated by 4) glutathione reductase (GRed). In the presence of transition metal ions, 

such as Fe2+, H2O2 can be converted to a hydroxyl radical (OH.-) 5). ONOO- is generated by the reaction 

of NO with O2
.-. ROS products react with cell proteins and DNA 7) ultimately causing cell death 8). 

(Cunha-Oliveira et al. 2013).  

1.2.3.1. Psychostimulant induced neurotoxicity  
 

a) Cocaine 

 
Mammalian research has shown reduced catalase activity after COC administration 

(Macedo et al. 2005), followed by higher SOD activity, causing increase in ROS 

production (Dietrich et al. 2005). COC exposure has been reported to increase 

hydrogen peroxide (H2O2) levels in the prefrontal cortex and in the striatum of rats 

(Dietrich et al. 2005).  

 

b) Methamphetamine  
 

Increased levels of DA in synaptic cleft, caused by exposure to METH, are 

metabolized mainly by auto-oxidation, causing the generation of ROS and dopamine 
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quinones (Kita et al. 2003; 2009, Moszczynska 2017). METH-induced ROS production 

is DA dependent, as demonstrated by the fact that non-dopaminergic neurons do not 

show enhanced ROS production (Larsen et al. 2002). In addition to ROS produced by 

METH (Yamamoto et al. 2008, Fleckenstein et al. 1997), nitric oxidative species have 

also been reported (Kovacic 2005). METH induces an increase in levels of CAT and 

protein carbonyls in the brain (Koriem et al. 2012), whereas it decreases SOD activity 

(Frenzilli et al. 2007).  

 
c) H2O2 as a neuromodulator  

 
Through the increasing use of metabolomic methods, more evidence is 

accumulating that metabolites and metabolic by-products can act as signaling 

molecules. One example is H2O2 (Rice  2011), which is small and rapidly diffusible in 

cells, commonly taken as ROS source since H2O2 degradation can lead to water or 

hydroxyl radical (OH•) formation. H2O2 can modulate neuronal activity by affecting the 

transmitter release (Lee et al. 2015). Similar evidence was also found in Drosophila, 

where it was proposed that DA regulates the response to oxidative stress (Hanna et 

al. 2015). 

 
In vitro studies have shown that endogenously generated H2O2, trough metabolism 

and the mitochondria respiratory chain can modulate vesicular neurotransmitter 

release of DA (Chen et al. 2001). Exogenously applied H2O2 can reversibly inhibit the 

evoked release of DA (Chen et al. 2001, Patel and Rice 2012). These data 

demonstrate an important new signaling role for ROS in synaptic transmission. 

 

1.2.3.2. Monoamines as ROS scavengers 
 

The chemical properties of monoamines that can be seen in vitro are in contrast 

to those found in vivo. Based on their chemical structure, all biological monoamines 

and their precursors show strong antioxidant activity in vitro (Gow-Chin and Chiu-Luan 

1997). Additionally it was found that, due to their catechol structure, which is widely 

distributed in many naturally occurring antioxidants, these monoamines could 

scavenge ROS (Shimizu et al. 2010). 

 
Several studies, discussed above, led to an emphasis on the effect of PS on 

ROS production induced by increased DA removal from synaptic cleft via oxidative 
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metabolism, which can be reduced by adding antioxidants such as TEMPOL (Jang et 

al. 2015). Together, these results indicate a dual role of monoamines in ROS 

production and scavenging, with implications for neuronal plasticity induced by drugs 

of abuse.   

 

1.2.3.3. Exogenous antioxidant and prooxidant effects  
 

Due to the very low permeability of many antioxidants, and the influence of blood-

brain-barrier on its susceptibility, exogenous antioxidants ultimately fail to protect the 

brain from oxidative stress (Shimizu et al. 2010). Imbalance in the levels of free 

radicals, common to many neurodegenerative diseases (Valko et al. 2007), as well as 

drug addiction (Cunha-Oliveira et al. 2013), can affect normal ROS removal, which can 

ultimately lead to long lasting neurological changes (McCord 2000). 

 
a) Polyphenols and antioxidants  

 
Many naturally occurring antioxidants, and especially polyphenols, have been 

reported to have beneficial effects on health (Costa et al. 2016, Lobo et al. 2010, 

Poljsak et al. 2013, Rodríguez-Morató et al. 2016) and neurodegenerative diseases 

(Bhullar et al. 2013, Solanki et al. 2015, Vauzour 2012). Recent studies also show an 

effect of ROS scavengers on phenotypes related to the drug addiction. One example 

of this is TEMPOL, a molecule known to have ROS scavenging properties. By using 

TEMPOL, it was reported that locomotor sensitization in rats, induced by COC and 

METH, can be abolished, leading to the reduced production of ROS (Jang et al. 2015, 

Jang et al. 2017, Numa et al. 2008). Some naturally occurring antioxidant molecules 

have also been tested for the ability to lower ROS upon drug administration. Vitamin 

C, commonly known as a naturally occurring antioxidant, was shown to reduce METH-

induced oxidative stress in the mammals (Huang et al. 2017). Another example is 

luteolin, polyphenol molecule, which was reported to inhibit behavioral sensitization to 

METH (Yan et al. 2014).  

 
In this thesis, we have tested two molecules with potential antioxidant properties 

quercetin and tyrosol, and their effect on SENS and LS after METH and COC 

exposures. There is evidence to indicate that similar biological properties would be 

expected for quercetin and luteolin based on their structural and chemical similarities 
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(Cotelle 2001, Galati et al. 2001), and for naturally occurring polyphenol tyrosol, which 

has the same catechol structure as monoamines and has ROS scavenging properties 

(Domínguez-Perles et al. 2017, de la Torre et al. 2006).  

 

b) Pro-oxidants paraquat and hydrogen peroxide 

 
In Drosophila research, paraquat (PQ) is commonly used as an agent for inducing 

oxidative stress and modelling neurodegenerative diseases (Bonilla et al. 2006, 

Vrailas-Mortimer et al. 2012). Flies exposed to PQ show movement disorders 

(Chaudhuri et al. 2007), and have decreased food intake (Ja et al. 2007). This suggests 

that PQ is sufficient to induce oxidative stress, even at small dosages and short 

exposures. In this thesis, it is used as a way to induce oxidative stress and to measure 

the consequence on SENS and LS after METH and COC exposures. 

 
Another approach to induce oxidative stress in flies is to feed them with hydrogen 

peroxide (Bonilla et al. 2006). It has been reported that flies continuously fed with 

hydrogen peroxide will initially increase their locomotor activity and subsequently their 

daily locomotor activity rhythms will became suppressed (Grover et al. 2009). 

Hydrogen peroxide is sufficient to induce oxidative stress, even in small dosages and 

for short exposures. In this work we used H2O2 as a way of inducing oxidative stress 

and measured the consequence on SENS and LS after METH and COC exposures.  
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2. AIMS  

 

The main aim of this thesis is to identify molecular mechanisms of neuronal 

plasticity induced by psychostimulants. The thesis covers two endophenotypes that 

are relevant for development of addiction: locomotor sensitization and rewarding 

effects of psychostimulants. The focus is in describing characteristics of the COC- and 

METH-induced neuronal plasticity, and relation between the mechanism of locomotor 

sensitization and rewarding effect. In particular, I investigate the function of circadian 

genes, monoaminergic regulation and redox balance in the development of 

psychostimulant-induced plasticity. The activities were planned in five main aims. 

The first aim is the development and optimization of a new method for inducing 

and quantifying sensitivity (response to an acute dose of a drug) and locomotor 

sensitization (response to repeated treatment) to volatilized COC and METH in 

Drosophila melanogaster. By applying the newly developed test, I will test if the 

vesicular monoamine transporter, dopamine receptor type 1 and dopamine transporter 

regulate sensitivity and locomotor sensitization to vCOC and vMETH, since these 

proteins are known targets in mammals. The involvement of monoamines in the 

development of sensitivity and sensitization to vCOC and vMETH will be tested by 

pharmacological reduction of dopamine levels using 3-iodo tyrosine (3IY), and 

reduction of dopamine, serotonin and octopamine levels using reserpine (res).  

The second aim is to test if dependence of locomotor sensitization on the 

function of a selected group of circadian genes is linked with redox balance. To address 

this question, the requirement for circadian genes for development of sensitization to 

vCOC and vMETH will be tested. The influence of acute and repeated exposures of 

vCOC and vMETH on redox status will be determined by measuring CAT and SOD 

activity, and ROS and hydrogen peroxide production in wt flies. The influence of 

exogenous pre-treatment with pro- and antioxidant will be tested by investigating the 

development of sensitization to vCOC and vMETH in wt flies. The effectiveness of the 

anti- and prooxidants will be determined using the free radical scavenging DPPH (2,2-

diphenyl-1-picrylhydrazyl) assay, and compared to the effects that these substances 

have on locomotor sensitization to vCOC and vMETH. Finally, the redox status 

markers in non-treated flies and flies pre-treated with anti- and prooxidants will be 

compared with their degree of sensitization to vCOC and vMETH. 
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The third aim is to test the hypothesis that exogenous H2O2 can act as a 

neuromodulator. The level of perturbation induced by exogenous H2O2 will be 

determined by measuring CAT, SOD, ROS and hydrogen peroxide production. 

Behavioural responses to repeated vCOC and vMETH exposures will be measured in 

flies pre-treated with H2O2. In order to confirm the neuromodulator properties of H2O2, 

flies will be pre-treated with an antioxidant and H2O2, before being tested for 

sensitization to vCOC and vMETH.  

 
The fourth aim is to test if flies voluntarily self-administer COC and METH by 

applying the modified capillary feeder (CAFÉ) assay. Positive outcome would indicate 

that psychostimulants in flies, as in mammals, act on the motivation for drug taking. If 

the preferential consumption of psychostimulants is established then the strength of 

the preference will be tested by increasing the aversiveness to psychostimulants, and 

by testing if flies show elements of relapse after drug deprivation. 

 
  The fifth step is to determine the role that circadian genes, the vesicular 

monoamine transporter, dopamine receptor type 1 and dopamine transporter have on 

preferential consumption of COC and METH, in order to define common genetic 

elements between two forms of neuronal plasticity, preferential consumption and 

locomotor sensitization.  
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3. METHODS 

 

3.1. Fly stocks   

 

All behavior and biochemical assays were performed on 3 to 5 day-old flies of 

the wild type CantonS background. Flies were raised in a light:dark (LD) cycle (12 

hours:12 hours) at 25°C, 70% humidity on a standard cornmeal/agar medium. 

Circadian mutant strains used were: per01, tim01, cyc01, ClkJrk and pdf01. The autosomal 

recessive mutation in the dopamine transporter (DAT) used was fumin (fmn) (Kume et 

al. 2005). The mutant for the dopamine receptor type 1 (DR1) was dumb (Faville et al. 

2015). Flies carrying transgenic constructs UAS-VMAT RNAi and DDC-GAL4 were 

kind gifts from S. Birman.  

 
3.2. Reagents and general procedures 

 
The psychostimulants cocaine-hydrochloride (≥97.5%) and methamphetamine-

hydrochloride (≥98%) were purchased from Sigma Aldrich. 96% ethanol used for 

preparing of psychostimulants stock solutions was purchased from VWR. Reserpine 

(res) (≥99%), 3-iodo-L-tyrosine (3IY) (≥95%), 3,4-dihydroxy-L-phenylalanine (L-DOPA) 

(≥98%), dopamine-hydrochloride (DA) (≥98%), tyramine-hydrochloride (TYRA) 

(≥98%),  hydrogen peroxide (H2O2) (30%), paraquat (PQ) (≥98%), quercetin dihydrate 

(QUE) (≥95%), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL) (98%), 

quinine (QIN) (90%) and tyrosol (TYR) (98%) were purchased from Sigma Aldrich.  

 
Fly food was prepared according to following recipe: 1 L of molasses food was 

prepared by adding 15 g of sugar, 35 g of dry yeast, 12 g of Agar type I and 60 mL of 

50% molasses water solution to 970 mL of tap water. Mixture was cooked on the 

induction plate for 15-20 minutes. To prevent mold growth after cooking, 7.5 mL of 

propionic acid (Sigma Aldrich, 99%) and 7.5 mL of p-hydroxybenzoic acid methyl ester 

(NIPAGINE, Roth, 99%) in 15% ethanol solution were added. 

 

3.2.1. Substance pre-treatments  

 

To prepare food with supplements, supplemental stock solution/s were added 

to the 50 mL plastic tube and mixed with 10 mL of liquid molasses food. The mixture 
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was stirred and vortexed at 1,400 rpm for one minute to avoid the possibility of the final 

concentration of supplement in food not being evenly homogeneous. After cooling, the 

same preparation was used both for pre-treatment of flies and for preparing of DAM 

system tubes.  

 
Table 1. Food supplements used in pre-treatments of flies.  

Molecular properties Supplement 
Concentration in fly 

food 

Time of 
exposure to 
substance 

before assay 

Blocking VMAT Reserpine 10 µM 
48 h 

(Bainton et al. 
2000, Andretic  

et al. 2005) 

Blocking TH 3IY 5 mg/mL 

Dopamine precursor L-DOPA 1 mg/mL 

Blocking VMAT + 
dopamine precursor 

L-DOPA + reserpine 
1 mg/mL+10 µM 

Prooxidants 
 H2O2 0.4 % 

17 h 
(Jang et al. 
2015, 2017, 

Chaudhuri  et 
al. 2007, Grover 

et al. 2009) 

PQ 4 mM 

Antioxidants 

TEMPOL 3 mM 

 QUE 4.8 mM 

TYR 12.45 µM 

Pro- and antioxidants 
H2O2 + QUE 0.4 % + 4.8 mM 

H2O2 + TYR 0.4 % +12.45 µM 

 

3.2.2. Collecting flies for behavioral assays  

 

Each assay was done with flies of a single sex, and sorting of flies was done 

using carbon dioxide (CO2) platform under the microscope using a small paint brush 

for no more than 5 minutes. Selected flies were transferred to new culture vial for their 

recovery from anesthesia, at least 2 hours to a day before the start of the behavioral 

assays.  

 
3.2.3. Preparation of tubes for DAM system  

 
DAM system tubes (diameter 5 mm, length 65 mm, TriKineticks) are made from 

polycarbonate with two small holes at the side of the tube to enable air flow. Regular 

food or food with supplements was taken out of a plastic vial and cut into 5 mm thick 

slices. Food was then left on paper tissue for not more than 5 minutes in order to 

adsorb excess fluid from the food. This is important, as flies can stick to wet food during 

transfer from the culture vial to the DAM tube. Polycarbonate DAM tubes were pressed 

vertically onto the food surface in order to push food into the tube. The food end was 

preserved from drying out by wrapping a small piece of parafilm wrap around it. Holes 
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on the tubes were oriented to food end to enable normal airflow and waste draining 

from the system during the assay. 

 
An aspirator was used to transfer flies from the culture vial to the DAM tubes. In 

order to collect flies, the vial containing the flies was turned upside down and the pipet 

tip of the aspirator was put inside in such a way as to prevent the flies from escaping 

from the vial, while still allowing them to be collected by applying negative pressure. 

After collecting the flies, positive pressure was applied in order to transfer the fly from 

the aspirator into the DAM system tube. Flies were transferred to DAM tubes at least 

12 hours before the assay in order to habituate to the new environment.   

 
3.3. Behavior assays development and optimization  

 
This section provides complete information on construction, optimization and 

execution of behavioral test for measuring motor/activating effects (FlyBong) and 

reward effect (CAFÉ assay).  

 

3.3.1. FlyBong platform 

 

The platform for psychostimulant administration and locomotor activity 

monitoring consists of: a volatilization chamber, a Drosophila activity monitor 

connected to the DAM system (TriKinetics) and a psychostimulant delivery system 

(Figure 8). The volatilization chamber (a 250 ml three neck flask, VWR) has a heat cap 

(SAF, LabHEAT, KM-G, for 250 mL flask), which is used to volatilize cocaine (COC) or 

methamphetamine (METH) by heating it for 8 min at 185-200 °C. The side necks of 

the volatilization chamber are connected via glass and rubber tubes to the Drosophila 

activity monitor (DAM) on one side, and an air pump (Crawfish 1800 air pump), as a 

psychostimulant delivery system on the other side. After the 8 minute heating period, 

the air pump was applied for 1 minute with air flow rate of 2.5 L/min, in order to deliver 

volatilized PS. 

 
The central neck of the volatilization chamber is used for applying the 

psychostimulant-ethanol solution (PS are dissolved in 96% ethanol at a concentration 

of 10 mg/mL). To eliminate potential effect of ethanol fumes on fly behavior, the 

psychostimulant-ethanol solution was added into the volatilization chamber 4 to 6 

hours before drug administration, to ensure that the ethanol evaporates. This assay 
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uses vertical DAMS monitors (TriKinetics, Waltham, MASS) with a disperser (Gas 

Distribution Manifold, TriKinetics) and polycarbonate tubes. The rubber tube which is 

connected to the volatilization chamber and monitor disperser is closed by clamp 

during the heating period, in order to eliminate the leaking of PS before it can be 

administered by air pump. 

 

 

Figure 8. Scheme of the FlyBong platform for measuring changes in locomotor activity of 

Drosophila after delivery of vCOC and vMETH. PS dissolved in ethanol is pipetted into three-neck 

flask, which is then heated to the PS volatilization temperature. Single flies are housed in the individual 

tubes of the vertical Drosophila monitor (TriKinetics) and exposed to vCOC or vMETH for one minute 

by turning on the air pump and removing the clamp. Their locomotor activity is monitored as the number 

of crossings of the midline of the tube per minute for 30 minutes before and 30 minutes after PS 

exposure.  

 
3.3.1.1. Optimization of volatilization temperature and psychostimulant 

distribution  

 

Cocaine and methamphetamine in hydrochloride form begin to volatilize at 

around 185 °C. The time at which the heating cap of the FlyBong platform reaches this 

temperature, was tested using an empty system, with a thermometer in the central 

neck of the three-neck flask, placed 1-5 mm from the bottom of flask.    
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To test the homogeneity of distribution and stability of PS after volatilization, 

empty tubes without flies or food were immersed in 2 mL Eppendorf tubes filled with 

500 µL of distilled water. For this test, the optimized protocol was applied (8 minutes 

of volatilization, 2.5 L/min air flow, 1 minute of drug delivery and 75 µg of PS). After the 

volatilization, all tubes were detached from the dispenser and washed with an 

additional 500 µL of distilled water. Tubes were additionally vortexed for 1 minute at 

2,500 rpm. The monitor and dispenser are arranged with 4 rows and 8 columns in each 

row, so that for all 32 samples the UV-VIS spectra were recorded. 500 µL of each 

sample was recorded in triplicate using a 48-well plate and microplate reader 

TecanInfinitePro200 at λmax=275 nm for COC and λmax=250 nm for METH. Similarly, 

the amount of PS on each fly in the monitor was determined. For this, we have used 

flies exposed to optimized protocol. After PS exposure flies were frozen at -20 °C and 

transferred in empty 2 mL Eppendorf tubes filled with 300 µL of distilled water. Tubes 

containing flies were additionally vortexed for 1 minute at 2,500 rpm and 250 µL of 

each sample was recorded in triplicate using a 48-well plate and microplate reader 

TecanInfinitePro200 at λmax=275 nm for COC and λmax=250 nm for METH. To test the 

stability of PS after volatilization, we performed UV-VIS on random PS samples after 

volatilization using Cary 60 UV-VIS in range from 200-800 nm.  

 
3.3.1.2. Optimization of behavioral response 

 

a) Air flow strength and duration 

 
To test the influence of airflow on the behavior, different airflow strengths (2.5-

12 L/min) were tested using the FlyBong platform. This test was important since flies 

are sensitive to bursts of air (Lebestky et al. 2009). Additionally, after heating of the 

volatilization chamber for 8 minutes (without psychostimulant or ethanol), various 

lengths of exposure of the flies to 2.5 L/min warm air flow were tested, ranging from 10 

seconds to 7 minutes. Flies are sensitive to dehydration (Sayeed and Benzer 1996), 

so it is important to optimize their response to the duration of exposure to potentially 

dehydrating warm air. The optimum airflow was found to be 2.5 L/min, and the optimum 

duration of exposure to warm air after heating was 1 minute. The influence of 

evaporated ethanol (75 µL), present as solvent in PS stock solutions, was then tested 

in order to exclude the possibility that it may interfere with the behavior of the flies. The 

flies displayed an increased response following acute exposure to ethanol vapor (Parr 
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et al. 2001), and a control experiment was therefore performed to check that ethanol 

was not present in the system after an evaporation period of 6 hours and that any 

behavioral response was induced solely by the volatile PS. 

 
b) Response to acute exposure 

 
Using the optimized protocol (8 minutes of volatilization, 2.5 L/min air flow and 

1 minute of drug delivery) different amounts of PS were tested, ranging from 0-200 µg. 

This was in order to determine the amount that will lead to a significant increase in the 

locomotor activity of the flies, when compared to the baseline and the activity of the 

control group, at both the individual and population level. All tests were performed at 

09:00 in the morning. Flies show increased locomotion after acute exposure to vCOC 

(Bainton et al. 2000, Heberlein et al. 2009, McClung and Hirsh 1998), and same was 

observed for vMETH.    

 
c) Response to repeated exposures  

 
Different time interval between two exposures of flies to PS (3-30 hours) were 

tested for each PS, in order to determine which would lead to LS (8 minutes of 

volatilization, 2.5 L/min air flow,1 minute of drug delivery and 75 µg of PS). Data were 

analyzed at both the population and individual level.  

 
Multiple administrations of vCOC and vMETH were performed using the same 

standard protocol as for single administrations (8 minute volatilization, 1 minute 

delivery, 2.5 L/min air flow), but with lower levels of COC (45 µg) and METH (25 µg). 

COC and METH were each administered three times: at 09:00, at 19:00 and at 09:00 

on the following day.  

 
d) Circadian modulation of response on acute and repeated exposures 

 

To test the circadian modulation of sensitivity and locomotor sensitization, vCOC 

and vMETH assays were performed in constant dark conditions (DD), with flies 

previously entrained to 12 hours light:12 hours dark, using the standard protocol and 

12 hours between exposures. Flies were in DD for one day before the experiment. The 

first group of flies in DD was exposed to the initial dose of vCOC or vMETH at 10:00, 

2 hours after the light would have come on in a light:dark cycle, and to the second dose 
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at 22:00, two hours after light would have turned off in a light:dark cycle. The second 

group received the initial dose at 22:00 and the second at 10:00. All experimental 

manipulations were performed under dim red light. 

 
3.3.1.3. Screening using the FlyBong platform  

 

To validate FlyBong protocol we tested the involvement of: a) circadian gens, b) 

genetic and pharmacological manipulation of aminergic system, and c) prooxidant and 

antioxidant treatment, and measured sensitivity and LS of flies after exposure to vCOC 

and vMETH. 

 
Sensitivity (SENS) screens were based on one administration of COC or METH at 

09:00. LS screens required repeated administrations, which were 6 hours apart in case 

of COC, and 10 hours apart for METH, with first administration always at 09:00 (Table 

2).  

 
Table 2. Optimized protocols for inducing SENS and LS using FlyBong.  

 
Psychostimulant COC METH 

Volatilization temperature ≥185°C 

Heating period 8 min 

Air flow strength 2.5 L/min 

Duration of air flow 1 min 

Volume of 10 mg/mL 
psychostimulant-ethanol stock 

solution 
75 µL 

First administration  09:00  

Second administration  15:00  19:00 

Experimental conditions  25°C, 70 % humidity, LD 12:12 

 

3.3.1.4. DAM system data collection, analysis and interpretation  

 
The DAM monitor captures locomotor activity of 32 flies simultaneously using 

Data Acquisition Software. An infrared beam placed in the center of each tube 

measures the number of crossings made by the individual fly in a one minute interval, 

and is recorded as number of counts per minute (Pfeiffenberger et al. 2010). Locomotor 

activity counts are collected (Table 3) on a computer using a PSIU9 Power Supply 

Interface Unit (TriKinetics). Using DAMFileScan software, the stored data are 

extracted, based on given parameters (Table 3). Raw data, in the form of .txt files, 

collected by the DAM system were analyzed at either the population or individual fly 

level using Microsoft Office Excel 2016. Data recorded during 8 minutes of heating and 



33 
 

1 minute of drug delivery were excluded from both population and individual data 

analysis.  

 
Table 3. Summary of analyzed time periods for COC and METH. 

 

 
Time period of raw data collection 

Duration (min) 
COC METH 

Before or baseline 08:22-08:51 08:22-08:51 30 

Heating period 08:52-08:59 08:52-08:59 8 

Drug delivery 09:00 09:00 1 

After 1st administration 09:01-09:30 09:01-09:30 30 

Before or baseline 14:22-14:51  18:22-18:51  30 

Heating period 14:52-14:59  18:52-18:59 8 

Drug delivery 15:00  19:00 1 

After 2nd administration 15:01-15:30  19:01-19:30  30 

 

3.3.1.4.1. Population data analysis 
 

For population-based data analysis, raw data was analyzed as a mean number 

of counts per minute from 32 flies, at a 1 minute resolution, both 30 minutes before and 

30 minutes after the administration of PS. Locomotion was plotted on a kinetic graph 

as counts/min against time, from which conclusions can be made about the kinetics of 

perturbation induced by PS administration. 

 
Table 4. Calculations used in population data analysis and comparisons needed for SENS and 
LS determination. 

 
 vCOC vMETH 

Time interval  5 minutes AVERAGE 10 minutes AVERAGE 

Number of flies 32 32 

SENS 

Calculation 
Before – AVE 5 min 

After - AVE 5 min 
Before – AVE 10 min 

After - AVE 10 min 

Comparison  

a) Before to after in control 
(wt flies, mutants and 

treatments) 
b) After in control to after in 

vCOC 
c) After vCOC in wt flies to 

after vCOC in mutants 
and treatments 

a) Before to after in control (wt 
flies, mutants and 

treatments) 
b) After in control to after in 

vMETH 
c) After vMETH in wt flies to 

after vMETH in mutants 
and treatments 

LS 

Calculation 
Before- AVE 5 min 

After 1st - AVE 5 min  
After 2nd - AVE 5 min 

Before- AVE 10 min  
After 1st - AVE 10 min 

After 2nd - AVE 10 min 

Comparison 

a) After 1st to after 2nd in 
control (wt flies, mutants 

and treatments) 
b) After 1st to after 2nd vCOC 

in wt flies 
c) After 1st to after 2nd vCOC 

in mutants and treatments 

a) After 1st to after 2nd in 
control (wt flies, mutants 

and treatments) 
b) After 1st to after 2nd vMETH 

in wt flies 
c) After 1st to after 2nd vMETH 

in mutants and treatments 
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Kinetic graphs give the information’s about the strength and duration of PS 

administration on locomotion for the population. 

 
As the strongest change in the locomotor activity after vCOC occurs within first 

5 min after administration the comparisons were performed using data from the 5 

minutes immediately before and after vCOC administration (Table 4). The data were 

then combined, and plotted as histograms of average counts per minute (from 32 flies) 

in the 5 minutes immediately before and after COC administration for SENS. For LS 

determination, data  obtained 5 minutes before and after the first and second 

administrations were used.  

 
Population analysis of METH was based on the data obtained 10 minutes before 

and 10 minutes after administration, since the effect of the optimized protocol on fly 

behavior detectable on the kinetic graph was significantly different from baseline during 

first for 10 min after administration. LS determination data was obtained  10 minutes 

before and after the first and second administrations. For population data analysis, we 

compared flies exposed to volatilized PS to the control group (who were exposed to 

hot air and evaporated ethanol only). 

 
3.3.1.4.2. Individual data analysis 
 

The individual fly response compares averaged counts/min of an individual fly 

(in the first 5 minutes in the case of COC and in the first 10 minutes in the case of 

METH), before and after PS administration (first and/or second). From this data set, 

several behavioral properties can be objectively calculated at the individual level (Table 

5).  

 
Sensitivity (SENS) was calculated as the number or percentage of the flies, 

which increase their activity when baseline locomotor activity (B) was compared to the 

activity after the first administration of PS (A1). Individual fly data was calculated as 

the average during the 5 minutes before and after administration of COC, or 10 minutes 

before and after administration  of METH. Activity was then categorized as either the 

“same”, “decreased” or “increased” following the administration. The flies that increase 

their activity represent the subset of the population that responds to the 

psychostimulant.  
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Table 5. Criteria for calculation of SENS and LS in the individual data analysis.  

 
 COC METH 

Time interval  5 minutes AVERAGE 10 minutes AVERAGE 

Number of flies 1 1 

SENS 

Criteria B < A1 B < A1 

Calculation 
SENS% = number of SENS 

                         total number  
                        of flies in assay 

SENS% = number of SENS 
                          total number  

                    of flies in assay 

Comparison 
of wt flies 

with 

a) control 
b) different mutants  

c) treatments 

a) control 
b) different mutants and  

c) treatments 

LS 

Criteria B < A1< A2 B < A1< A2 

Calculation 
LS% = number of LS 
          total number of 

         flies in assay 

LS% = number of LS 
            total number of 

           flies in assay 

Comparison 
of wt flies 

with 

a) control 
b) different mutants  

c) treatments 

a) control 
b) different mutants  

c) treatments 

 

The same comparison can be performed for differences in behavior after first 

and second psychostimulant administration, with the caveat that the flies that respond 

to the second dose my not necessary include those who responded with an increased 

activity to the first dose. Therefore, comparison between first and second exposure 

only indicates sensitivity to the second exposure. 

 
To calculate the number or percentage of flies that develop LS upon repeated 

psychostimulant administration, flies that show stepwise increase in locomotor activity: 

before (B) < after 1st (A1) < after 2nd (A2) are included. These same criteria were used 

for calculation of locomotor sensitization in individual flies that received more than two 

doses of psychostimulant.   

 

3.3.1.4.3. Statistical data analysis 

 

a) Population data 

 
Population data statistical tests were performed in the program Statistica 13.3. 

Student t-test was used in the case of dependent samples (comparison within group). 

For comparison between 2 groups Student t-test for independent samples was used. 

One-way Analysis of variance (ANOVA) was used to analyze differences in locomotion 

between groups exposed to different concentration of vCOC and vMETH with a post-

hoc Dunnett test to determine the significant differences between a single control group 

and the remaining treatment groups. ANOVA for repeated measurements was used to 
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analyze differences in locomotion within one group before, after first and second 

exposure with a post-hoc Bonferroni multiple comparison test. The level of statistical 

significance was considered to be p <0.05 if not stated differently.  

 
b) Individual data 

 

For testing the statistical difference in individual data Mann-Whitney U-test for 

nonparametric analysis of two independent samples was used. For statistical analysis 

of data obtained from 3 or more groups, Kruskal-Wallis H-test for nonparametric 

analysis of independent multiple samples was used followed by Dunn's post-hoc test. 

The level of statistical significance was considered to be p<0.05. 
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3.3.2. CAFÉ assay  

 

Testing of voluntary PS consumption by flies, was performed using the previously 

developed Capillary Feeding (CAFÉ) assay for measuring ethanol preference 

(Devineni and Heberlein 2009, Zer et al. 2016). CAFÉ assay chambers were made 

from two main parts: a container for the flies and a feeding lid (Figure 9). The container 

was a 50 mL Drosophila tube, on top of which was a feeding lid made of plastic Petri 

dishes (Φ 25 mm) with 4 holes, into which 20-200 μL micropipette tips were placed. 

Each micropipette tip was adjusted to hold a 5 μL glass capillary (3.00 cm long and 1 

mm diameter, Hirschmann) which can be easily place inside the tip, but will not drop 

through it.   

 

Flies used in the CAFÉ assay were collected under CO2 anesthesia and transferred 

into the chamber, for a total of 6 flies per chamber. On the bottom of each chamber, a 

wet cotton ball was placed to prevent dehydration (1/5 of cotton ball was wetted with 1 

mL of tap water). 5 μL capillaries, used as a container for liquid food, were first dipped 

in mineral oil (Sigma Aldrich) to fill 2–3 mm of the capillary, preventing liquid food 

evaporation, and then in liquid food (100 mM sucrose solution) or the same liquid 

sucrose food supplemented with PS. 

 

 

 
Figure 9. CAFÉ assay chambers. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Heberlein%20U%5BAuthor%5D&cauthor=true&cauthor_uid=20005106


38 
 

Filled capillaries were wiped with tissue paper and the amount (in mm) of the 

food was measured using a ruler from the bottom of the capillary to the interface with 

mineral oil. The capillary was then placed inside of the pipette tip, with 2–3 mm of the 

capillary extending into the tube. Flies were then placed in an incubator at 25 °C, 70% 

humidity, light:dark 12:12, and after 24 hours the amount of remaining liquid food in 

each capillary was measured. This process was repeated each day for 3 to 5 days. On 

the first day, flies received sucrose in all capillaries, and from second day two 

capillaries contained PS. 

 
3.3.2.1. Optimization of  PS concentration 

 

Since flies orally administered 100 mM sucrose solution supplemented with 

COC or METH, different concentrations were tested in order to determine 

concentration that will lead to the maximal preference. For COC, preferential 

consumption concentrations tested were: 0.05, 0.10, 0.15, 0.20, 0.50, 1.00, and 1.50 

mg/mL, while METH concentrations tested were: 0.10, 0.20, 0.30 and 0.40 mg/mL. 

Testing was performed in naive flies (never exposed to PS before the assay), with the 

PS and liquid food locations fixed (every day in the same location), and without visual 

cues (Figure 10). Data were plotted as histograms of average preferential consumption 

over 4 days for each concentration of COC and METH, compared to that of the control 

group. These tests were necessary in order to eliminate the effect of the bitter taste of 

COC and METH, which is repulsive to flies (Amrein and Bray 2003). 

  
Initial stock solutions of COC and METH were prepared in distilled water from 

HCl forms of both PS, at a concentration of 10 mg/mL. A water stock solution of sucrose 

was 1 M. All COC and METH concentrations tested were prepared by diluting these 

stock solutions using distilled water.  

 
3.3.2.2. Influence of cue and capillary location  
 

The first step was to test the influence of cues (Kaun et al. 2011) that correlate 

with drug addiction and underlying learning and memory (Sanchis-Segura and 

Spanagel 2006), associated with PS and drug preference. Cues represent 

environmental signals (such as odor, color or light) which are associated with either 

punishment or reward (Pitman et al. 2009). For the purpose of this research, the cue 

was a black colored pipette tip.  
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Additionally, it was tested whether, if the location of the cue was fixed, but 

associated with PS or liquid food differently on different the days, this had an effect on 

the preference.  

 
3.3.2.2.1. Cue independent and dependent self-administration 
 

In the non-cued assay, two capillary were filled with PS solution and two with 

sucrose solution, arranged diagonally with no marking on the pipette tips. In the cue 

location assay, the presence of PS was indicated with a black-colored pipette tip. 

Preference in both assays was measured over four consecutive days, and plotted as 

histogram of average daily preference to PS. Testing of the influence of cues (Figure 

10) was performed using optimal COC (0.15 mg/mL) and METH (0.20 mg/mL) 

concentrations.  

 

 

 
Figure 10. Scheme of the feeding lid, both without cues (-Q) and fixed capillary containing PS 

(red line) location, and with (+Q) fixed cues (black pipette tip) and fixed capillary containing PS 

(red line) location, over consecutive 4 days.  

 

3.3.2.2.2. Capillary location  
 

Since cues increased preference for COC and METH self-administration, we 

performed a series of control experiments with fixed or altered cue and capillary 

locations. Concentrations used were 0.15 mg/mL COC and 0.20 mg/mL METH. 
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a) Fixed cue and capillary location 

 
The location of the cues and PS were fixed throughout the days of administration 

(Figure 11). Since the data for this approach showed an increased preference for PS 

compared to other approaches tested, fixed locations of both the cue and PS capillary 

were used for all further tests and screens, combined with optimized concentrations of 

PS.  

 

 
 

Figure 11. Scheme of the feeding lid with fixed locations of the cue (black pipette tip) and the 

capillary containing PS (red line), over 3 consecutive days. The pipette tip without a cue contained 

a capillary with sucrose solution (blue line), which was at the same location for all three days of the 

assay.  

 

b) Fixed cue and altered capillary locations 

 
In this approach the location of the cue was fixed, while the PS capillary location 

was changed, by switching the sides containing the PS and food capillary (Figure 12) 

or by diagonal rotation (Figure 13). 

 

 
 

Figure 12. Scheme of feeding lid with fixed cues (black pipette tip), but changing of the sides of 

the capillary containing PS (red) over 3 consecutive days. Each day, the side where the PS and 

sucrose capillary was located is changed, with regard to a fixed cue location. On the first day of 

administration, the cue (black pipette tip) was associated with the PS capillary (red line), while on the 

second day regular food (blue line) was associated with cue, and the third day was the same as the first. 
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Figure 13. Scheme of feeding lid with fixed cues (black pipette tip) and diagonally changing 

location of the capillary containing PS (red), over 3 consecutive days. On the first day of 

administration, the cue (black pipette tip) was associated with one PS (red line) capillary and one regular 

food (blue line) capillary, as were the pipette tips without cues. On the second day, capillaries were 

rotated clockwise by 90°, meaning that the cue was associated again with one PS and one regular food 

capillary, but in a different order, as were the pipette tips without cues. The third day was the same as 

the first.  

 

3.3.2.3. Testing features of addiction 
 

Features of addiction, relapse and consumption in the presence of a negative 

consequence were tested using the optimized protocol: fixed cue location associated 

with PS over a period of 4 or 5 consecutive days, with concentrations of 0.15 mg/mL 

COC or 0.20 mg/mL METH. 

 
2.3.2.3.1. Relapse induced by deprivation 
 

To test for relapse following deprivation from a drug, the preference of flies was 

measured over 5 consecutive days, for both a drug-deprived group and a non-deprived 

control group. The non-deprived group received each day two capillaries with sucrose 

and two with sucrose and PS. The deprived group received two capillaries with sucrose 

and two with sucrose and PS for the first two days only. On days 3 and 4, all 4 

capillaries were filled with sucrose, while on day 5 the setup was restored to that used 

before the deprivation.  

 
2.3.2.3.2. Consumption against negative consequence  

 

The 300 mM quine was added to liquid food containing PS, in order to enhance 

the bitter taste of liquid food, which is aversive to the flies (Devineni and Heberlein 

2009). The optimized protocol (Table 6) was applied to three groups of flies: a) a group 

which had a choice between sucrose solution alone or a sucrose solution 

supplemented with quine, b) sucrose solution alone or a sucrose solution containing 
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PS, and c) sucrose solution alone or a sucrose solution containing PS and quine 

solution. 

 
3.3.2.4. Screening using the CAFÉ assay 
 

The optimized CAFÉ assay protocol (Table 6) was used to test the involvement 

of: a) circadian genes (per01, tim01, cyc01 and ClkJrk) and b) genetic manipulation of 

aminergic system (fmn, dumb and Gal4DDC-UAS VAMT RNAi) on the preferential 

consumption of COC and METH. 

 
Table 6. Optimized protocol for testing self-administration of PS in flies.  

 
 COC METH 

Concentration of PS in 100 mM 
sucrose solution 

0.15 mg/mL 0.20 mg/mL 

Sucrose liquid food 
concentration 

100 mM 

Number of capillary and cue 4 in total – 2 with sucrose and 2 with PS + sucrose 

Measurement and exchanging 
of capillary 

10:00 

Cue and capillary location fixed cue and capillary location 

Cue associated with two PS containing capillary 

Number of flies per a chamber 6 

Humidity inside of chamber  1/5 of cotton ball wetted with 1 mL of tap water 

Number of days in assay  4 

Experimental conditions  25 °C, 70% humidity, LD 12:12 
 

3.3.2.5. Data collecting  
 

Preferential consumption is calculated as a preference index (PI), based on the 

total consumption over 24 hours of food containing drug (from both capillaries), minus 

drug-free food (from both capillaries) and normalized by total food consumption (food 

with and without drug from all 4 capillaries).  

 
3.3.2.5.1. Statistical data analysis  

 

Statistical tests were performed in the program Statistics 13.3. ANOVA for 

repeated measurements was used to analyze differences in PI within one group over 

several days. For comparison of the average PI between different groups, a t-test for 

independent samples (for 2 groups) or one-way ANOVA (for 3 or more groups) were 

used. Following all ANOVA analyzes a post-hoc Tukey's multiple comparison test was 

performed. The level of statistical significance was considered to be p<0.05. 
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3.4. Biochemical assays 

 
Biochemical assays were performed to investigate the influence of COC and 

METH on the antioxidant enzymes activity and induction of oxidative stress, since it 

was found that both biomarkers are perturbed upon PS administration (Dietrich et al. 

2005, Hanna et al. 2015). All assays were performed on whole body extracts. To test 

the antioxidant properties we used the DPPH antioxidant assay, and tested dopamine, 

dopamine precursors, L-DOPA and tyramine (Gow-Chin Y 1997, Dimić et al. 2017). 

The same assay was applied in order to test the antioxidant properties of other 

molecules investigated in this thesis (Table 7).  

 
3.4.1. Antioxidant enzymes activity assay 

 

The 0.05 M potassium phosphate buffer [pH 6,9] was prepared by mixing 49 mL 

0.1 M K2HPO4 with 51 mL of 0.1 M KH2PO4 and diluting with 100 mL of distilled water. 

The 20 mM potassium phosphate buffer [pH 10], was prepared from 0.05 M potassium 

phosphate buffer [pH 10] by dilution. The 0.05 M potassium phosphate buffer [pH 10] 

was made by mixing 100 mL of 0.05 M Na2HPO4, 5 mL of 0.1 M NaOH, and 95 mL of 

distilled water. K2HPO4, KH2PO4, Na2HPO4, NaOH, and EDTA 

(ethylenediaminetetraacetic acid) were purchased from Kemika. H2O2 (30%), TEMED 

(N,N,N′,N′-Tetramethylethane-1,2-diamine) (≥99%), and quercetin dihydrate (≥95%) 

were purchased form Sigma Aldrich, while Triton X-100 was purchased from Bio-Rad.  

 

3.4.1.1. Catalase enzyme activity assay  
 

This assay was adapted from (Luck 1965, Sun and Tower 1999). Enzyme 

extracts were prepared by homogenization of five adult flies in 800 μL of ice-cold 

homogenizing solution (0.05 M potassium phosphate [pH 6,9], 0.1% Triton X-100). 

Flies in 2 mL tubes were frozen at -20 °C for about 20 minutes, after which they were 

homogenized with a plastic pestle. 800 μL of ice-cold homogenizing solution was then 

added to the tubes and vortexed for 1 minute at 1,800 rpm. Samples were centrifuged 

at 14,000 rpm, 4 °C for 20 minutes. 300 μL of the resultant supernatant was then 

transferred in new tube and diluted in a ratio 1:2 with homogenizing solution (i.e. 600 

μL of homogenization solution was added to 300 μL of enzyme extract). Reactions 

were initiated by adding 10, 15, 20 or 25 μL of diluted extract to 450 μL of substrate 
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solution, containing 0.05 M potassium phosphate buffer [pH 6.9] and 15 mM H2O2. 

Over 5 minutes, the decrease in the optical density at 240 nm (OD240) was measured 

using a TecanInfinitePro200, and data were plotted as change in OD240 per minute. 

For each dilution, these data were linear regarding to time and amount of extract. The 

catalase activity is reported as the change in OD240 per minute per 0.1 µg of extract 

(mean and standard error of three experiments).  

 
3.4.1.2. Percentage of SOD inhibition  
 

This assay was adapted from one published previously (Kostyuk and 

Potapovich 1989, Sun and Tower 1999). Total SOD activity was determined using the 

same protocol for enzyme extraction as in the catalase assay. SOD activity was then 

measured as the degree by which the oxidation of quercetin by TEMED is inhibited in 

the presence of extract. 10, 15, 20 or 25 μL of extract were added to 450 μL of reaction 

mixture containing 20 mM potassium phosphate buffer [pH 10], 0.8 mM TEMED, 0.8 

mM EDTA and 0.5 mM quercetin. The change in OD406 was measured on a 

TecanInfinitePro200 for 10 min, and compared to that of controls without extract. An 

average value of OD406 (from three experiments) was taken for each different 

concentration of extract added, along with the corresponding standard error. Enzyme 

activity is shown as a percentage of quercetin oxidation inhibition per minute and per 

0.1 micrograms of enzymatic extract (% QUE oxidation inhibition/minute/0.1 µg). 

 

3.4.2. Measuring indicators of oxidative stress 
 

The Tris-HCl (Trizma hydrochloride) was purchased from Sigma Aldrich, and 

buffer solution was prepared by dissolving Tris-HCl in distilled water. The pH was 

adjusted with 35% HCl titration. Other chemicals used were: NaCl and DMSO 

purchased from Kemika, SDS (sodium dodecyl sulfate, GE Healthcare), PBS 

(Phosphate Buffered Saline, Roche), while HEPES (99.5%), CHAPS hydrate (98%), 

DDT (98%), and sodium deoxycholate (98%) were purchased from Sigma Aldrich.  

 

3.4.2.1. Determination of hydrogen peroxide concentration 
 

This assay was adapted from (Wang et al. 2011, Jakubowski and Bartosz 1997). 

The concentration of hydrogen peroxide (H2O2) present in whole fly extracts was 

measured using 2,7-dichlorofluorescein (H2DCF), purchased from Sigma Aldrich. 
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Three flies were homogenized in 150 μL RIPA lysis buffer (50 mM Tris-HCl, 150 mM 

NaCl, 1% NP-400, 5% sodium deoxycholate, 0.1% SDS) and samples were 

centrifuged for 20 min at 14,000 rpm, 4 °C. Aliquot of 10 μL of homogenate was then 

placed in one well of a 96-well plate (black bottomed), to which 140 μl of PBS 

containing 50 μM H2DCF was added (initially prepared as DMSO stock solution). The 

reaction was incubated for 60 minutes at room temperature. A TecanInfinitePro200 

microplate reader was used to measure fluorescence at 515 nm excitation and 680 nm 

emission. The relative fluorescence intensity was normalized to protein concentration. 

The relative hydrogen peroxide concentration was indicated by the ratio of 

fluorescence intensity at 515 nm/680 nm (mean and standard error based on 3 

experiments). 

 
3.4.2.2. Determination of superoxide anion radical concentration 
 

This assay was adapted from (Wang et al. 2011, Jakubowski and Bartosz 1997). 

The concentration of superoxide anion radicals (O2
●-) in all fly extracts was determined 

using dihydroetidium (DHE), purchased from Sigma Aldrich. Three flies were 

homogenized in 150 μL of lysis buffer (50 mM HEPES pH 7.4, 5 mM CHAPS and 5 

mM DTT) and samples were centrifuged at 14.000 rpm for 20 minutes at 4 °C. Aliquot 

of 10 μL of homogenate was put in one well of 96-well plate (black bottomed), to which 

140 μl of PBS containing 10 μM DHE was added (initially prepared as DMSO stock 

solution). The reaction was incubated in the dark at room temperature for a period of 

10 minutes. A TecanInfinitePro200 microplate reader was used to measure 

fluorescence at 485 nm excitation and 585 nm emission. The relative fluorescence 

intensity was normalized to protein concentration. The relative concentration of the 

superoxide anion radical was indicated by the ratio of fluorescence intensity at 485 

nm/585 nm (mean and standard error from three tests). 

 
3.4.3. DPPH radical scavenging assay  

 

The α,α-diphenyl-β-picrylhydrazyl (DPPH) is a molecule used for quantification 

of antioxidant capacity of different substances (Kedare and Singh 2011). The first step 

is to prepare 1 mM methanol stock solutions of TRX (Trolox, 99% Sigma Aldrich), DA 

(dopamine), L-DOPA, TYRA (tyramine), QUE (quercetin), TYR (tyrosol), TEMPOL and 

QIN (quinin), as well as a 0.1 mM methanol solution of DPPH (99%, Sigma Aldrich). 
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Aliquot of 160 µL of 0.1 mM DPPH methanol solution was added to a 96-well plate, to 

which 30 µL of the testing molecule solutions were added. Kinetics was measured at 

0, 5 and 10 minutes, based in absorbance at 515 nm using a TecanInfinitePro200.  

 
Table 7. Tested molecules and their structures.  

 
Name Structure Expected properties in vitro 

Trolox 

 

antioxidant 

TEMPOL 

 

antioxidant 

Quercetin 

 

antioxidant 

Tyrosol 

 

antioxidant 

Dopamine 

 

antioxidant 

L-DOPA 

 

antioxidant 

Tyramine 

 

antioxidant 

Quinin 

 

antioxidant 
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The UV-VIS spectrums of hydrogen peroxide, dopamine, L-DOPA, octopamine, 

tyramine, tryptophan, quercetin, tyrosol, and TEMPOL were measured using Cary 60 

(Agilent Technologies), with methanol (p.a., Kemika) as solvent, in a quartz cuvette. 

The wavelength range used for measurement was 800-200 nm.  

3.4.4. Statistical tests used 
 

All the data were plotted as mean and standard error of experiments performed 

in triplicate of the appropriate measurement (CAT and SOD activity, ROS and H2O2 

production, DPPH free radical scavenging). Statistical tests were carried out in the 

program Statistics 13.3. One-way ANOVA was used for comparison of SOD and CAT 

enzyme activity, ROS and H2O2 production before and after the first and the second 

exposures, comparison between different groups, such as pre-treated and non-treated 

treated groups. Post-hoc Dunnett test was used to determine the significant differences 

between a single control group and the remaining treatment groups. The level of 

statistical significance was considered to be p <0.05.   

 
Pearson correlation coefficient was determined for correlation between oxidant 

status marker and antioxidant enzymes, with interpretation being performed on Petz's 

scale. The same approach was used to test correlation between free radical 

scavenging, oxidant status marker and antioxidant enzymes. The level of statistical 

significance was considered to be p<0.05. 
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4. RESULTS 

 

Results are separated into three main sections. The first section covers 

optimization of assays for the induction and quantification of the motor-activating effect 

to COC and METH. In this part, circadian, monoaminergic and redox modulation of 

neuronal plasticity, induced by COC and METH are tested. The second part is focused 

on optimization of the CAFÉ assay for measuring self-administration of COC and 

METH in flies. This assay was used to test the circadian and monoaminergic 

modulation of the reward effect induced by COC and METH. The third part is focused 

on biomarkers of COC and METH influence on redox status. 

 
4.1. Locomotor activating effect of PS  
 

One of the main aims of this thesis is the construction and optimization of a new 

platform for the induction and quantification of the locomotor activation effect in flies 

following acute or repeated COC and METH administration.  

 
The platform presented, “FlyBong” is cheap, user friendly and easy to build in 

any laboratory conditions. In addition, it is high-throughput, reproducible, and objective 

and allows data analysis on both the population and individual fly level.   

 
4.1.1. FlyBong platform optimization  
 

The optimization of the platform was focused on defining parameters of the 

duration of the volatilization and uniformity of PS distribution to individual flies in the 

system. Next concern was delivery of PS with minimal environmental perturbations, in 

order to minimize the artefacts of the mode of the drug delivery from biological effects 

of vCOC and vMETH.  

 
That was followed by optimization of the amounts of COC and METH that would 

have specific motor-activating effects. Additionally, the time interval between two 

administrations had to be optimized in order to induce a stepwise increase in locomotor 

activity or locomotor sensitization. 
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4.1.1.1. Volatilization and distribution of PS 

 

The first step was to optimize the length of time required for the heating cap to 

raise the temperature of the three-neck flask to 185 °C. This is the temperature at 

which volatilization of COC and METH in hydrochloride form has been reported to 

occur. We showed that, starting from room temperature, the heating cap should be 

active for at least 8 minutes for internal temperature of the flask to reach 185-200 °C 

(Figure 14A). Based on this evidence, we selected a heating period of 8 minutes. 

 
The system for delivery of the drugs is composed of a gas disperser, a three-

neck flask, rubber and glass tubes. This can cause a lot of condensation of COC and 

METH on these surfaces, before the desired amount reaches the flies in the monitor. 

Some of the consequences of this may be: non-uniform distribution of COC and METH 

across rows and columns of the dispenser or possible decomposition of COC and 

METH due to the high temperatures applied in the volatilization procedure. To test 

these potential weaknesses of the system, we quantified the amount of COC and 

METH that was delivered to empty polycarbonate tubes (without flies or food). For this 

test we used 75 µL of 10 mg/mL COC and METH ethanol solution, which was heated 

for 8 minutes, after which we applied air flow 2.5 L/min for 1 minute. All tubes were 

immersed in 2 mL Eppendorf tubes containing 500 µL of distilled water during heating 

and delivery. After the assay, all tubes were detached and washed with an additional 

500 µL of distilled water. After exposure to PS flies were frozen at -20 °C, transferred 

into 2 mL Eppendorf tubes containing 300 µL of distilled water, and vortexed for 1 

minute at 2,500 rpm. We showed that the distribution of COC and METH inside of 

tubes and on the flies was uniform across all the rows and columns (Figure 14B and 

14C), and since there was no additional peaks in UV spectra after COC and METH 

quantification, we concluded that 8 minutes of volatilization does not cause significant 

decomposition of COC and METH (Suppl. Mat. Figure 1A and 1B).  

 
Based on these data, we selected an optimized protocol consisting of: 8 minutes 

of volatilization, 1 minute of 2.5 L/min airflow and 75 µg of COC and METH. With this 

protocol, the same amount of COC and METH is uniformly delivered to the all flies in 

the system at the same time, allowing high reproducibility using the FlyBong platform. 

The system is high-throughput, since COC and METH can be administered to 32 flies 

in the assay at the same time.  
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Figure 14. Optimization of the volatilization temperature, and distribution of COC and METH in 

DAM system tubes. A) Volatilization of COC and METH depends on the temperature of the flask and 

the duration of heating. After 8 minutes, the internal temperature reaches 185 °C, the vaporizing 
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temperature for HCl form of COC and METH. B) Volatilized COC is uniformly distributed in all tubes of 

the DAM monitor. Mean amount of COC ± standard error of the mean (SEM) delivered per row of the 

vertical DAM monitor consisting of 32 slots (4 rows and 8 columns). Data are plotted as histograms 

showing the average of three tests. Using one-way ANOVA no statistical difference was found between 

amounts of COC per row. C) Volatilized METH is uniformly distributed in all tubes of the DAM monitor. 

Mean amount of METH ±SEM delivered per row of the vertical DAM monitor consisting of 32 slots (4 

rows and 8 columns). Data are plotted as histograms showing the average of three tests. Using one-

way ANOVA no statistical difference was found between amounts of METH per row. 

 

4.1.1.2. Minimizing the handling of flies during PS administration  
 

Flies are sensitive to startle (Lebestky et al. 2009), a sudden or unexpected 

environmental stimuli, and as a consequence increase the locomotor activity. Because 

of this, different strengths of airflows (2.5-12 L/min) were tested, and we found that the 

maximal airflow rate that could be used is 2.5 L/min (Figure 15A). This airflow rate 

caused low perturbation of the locomotion behavior of flies at the population level, 

when compared to a control group that did not receive any treatment. Airflow of 6 L/min 

or higher led to significant increase in locomotor activity.   

 
The second parameter to be optimized was the duration of 2.5 L/min warm 

airflow. We exposed flies to the different 2.5 L/min airflow durations from a flask heated 

for 8 minutes without COC (Figure 15B). Minimal perturbation of the flies locomotor 

activity was seen when the airflow was applied for 1 minute (Suppl. Mat. Figure 1C).  

 
In contrast, durations shorter or longer than one minute led to a significant 

increase in locomotor activity. We suspect that shorter exposures (<1 minute) cause a 

startle-like response (Lebestky et al. 2009), while longer exposures (>1 minute) 

decreased humidity and increased temperature in the recording tubes, causing 

increased locomotion (Sayeed and Benzer 1996). 

 
Additional control experiments were performed to eliminate any possible 

influence of the 96% ethanol used as solvent for the preparation of the PS stock. One 

minute of 2.5 L/min airflow rate, with or without heating, has not been previously seen 

to increase locomotion at the population level, and the same result was observed when 

75 µL of 96% ethanol was added 6 hours before the airflow (Figure 16). In summary, 

the protocol was optimized with 8 minutes of heating, 2.5 L/min air flow and 1 minute 

of drug delivery.  
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Figure 15. The amount of locomotor activity depends on the intensity and duration of airflow in 

male wt flies. Locomotor activity was measured in the DAM system at one minute resolution and plotted 

on kinetic graphs as mean activity ± SEM for 32 flies (all tested groups). Times before exposure are 

shaded gray, lighter for 5 minutes and darker for 10 minutes, the dotted line indicates the time of the 

exposure and times after are shaded gray, lighter for 5 minutes and darker for 10 minutes. A) Flies 

exposed to different rates of airflow (without COC or heating of the flask) for one minute. B) Mean activity 

± SEM for flies exposed to different duration of 2,5 L/min airflow from a flask heated for 8 minutes, 

without COC.  

 

 After testing the same optimized protocol on females (8 minutes of heating and 

one minute of 2.5 L/min airflow), it was observed that female flies are more sensitive 

to the warm air and the intensity of the airflow than males (Suppl. Mat. Figure 2.A). To 

test this, different durations, from 1 to 7 minutes of 2.5 L/min airflow were used which 
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resulted in non-significant effect on duration of increase in locomotion (Suppl. Mat. 

Figure 2.B). Females therefore, cannot be tested for a motor-activating effect of PS 

using the protocol optimized on males, as environmental perturbation causes 

significant increase in their locomotion.   

 

Figure 16. Optimized protocol causes minimal perturbation of wt males locomotor activity. 

Locomotor activity was measured in the DAM system at one minute resolution and plotted on kinetic 

graphs as mean activity ± SEM for 32 flies (all tested groups). Times before exposure are shaded gray, 

lighter for 5 minutes and darker for 10 minutes, the dotted line indicates the time of the exposure and 

times after are shaded gray, lighter for 5 minutes and darker for 10 minutes. Ctrl - represents the group 

without any treatment. The air - group has received 1 minute of 2.5 L/min airflow. The hot air- group 

received 1 minute of 2.5 L/min air flow after 8 minutes of heating. The hot air + EtOH - group received 

1 minute of 2.5 L/min air flow after 8 minutes of heating of volatilization chamber, into which 75 µL of 

96% ethanol had been added before the assay. 

  

4.1.1.3. Sensitivity to vCOC nad vMETH is dose dependent  

 

Applying different amounts of COC and METH: 0-150 µg for COC and 0-200 µg 

for METH using standard protocol, we tested sensitivity, or the increase in locomotion 

response after acute exposure to PS. 

  
All of these drug amounts were tested at the same time of the day, 09:00 in the 

morning, to eliminate any circadian effect on sensitivity (Baird and Gavin 2000). This 

time point was chosen because flies are diurnal animals (Helfrich-Förster 2009), active 

during the daytime (08:00 to 20:00) and inactive or sleeping during the night time 

(20:00 to 08:00). Flies show a bimodal (Helfrich-Förster 2009) activity profile, with 

maximal activity at the beginning (08:00) and end (20:00) of the day. It is known that 
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flies respond with increases in locomotion after administration of low amounts of COC 

(McClung and Hirsh 1998). To test FlyBong as a platform for drug delivery of vCOC, 

different amounts of COC were added to the three-neck flask 6-12 hours before the 

assay, and locomotion of the flies was observed 30 minutes before and after drug 

administration. From kinetic graphs (Figure 17A), it can be seen that the flies increase 

 

 

Figure 17. Exposure to volatilized COC transiently increases locomotor activity in wt males in a 

dose-dependent manner. A) Kinetic graph of locomotion, expressed as number of counts per minute 

for control group of flies (ctrl) (n=32) exposed to warm air, and groups exposed to 25 µg (COC 25 µg) 

(n=32), 75 µg (COC 75µg) (n=32) or 150 µg (COC 150µg) (n=32) of volatilized COC at 09:00. Data are 

plotted as mean activity ± SEM for 32 flies in one minute resolution (all tested groups). The shaded gray 

panel represents locomotor activity 5 minutes before drug exposure, the dotted line indicates the time 

of the exposure, and the gray panel is first 5 minutes after the exposure. B) Mean locomotor activity ± 

SEM for amounts of volatilized COC applied, ranging from 0 to 150 µg (n=32 flies per treatment) for 5 
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minutes before and 5 minutes after COC exposure at 09:00. Statistical significance at p≤0.05; a-

comparison of before to after (within the group using Student’s t-test for dependent samples), b-after in 

control group compared to after in groups exposed to volatilized COC (one-way ANOVA with Dunnett 

post-hoc test). 

 
their locomotor activity in the first 5 minutes after application of 75 µg vCOC. After that 

time, locomotion decreases to the level of baseline before the exposure and to the 

level of control group, which received same treatment but without COC. Lower 

amounts of vCOC did not induce increases in locomotion, while higher amounts yielded 

similar results as 75 µg (Figure 17B). Amounts above 75 µg most likely did not show 

further increases in locomotion since higher COC doses can induce stereotypical 

behaviors, manifesting in flies as buzzing, twirling or spinning in circles (McClung and 

Hirsh 1998). These types of behavior cannot be quantified using the DAM system with 

one IR beam, as the system records only the number of crossings in the middle of the 

tube. Based on this data, 75 µg of COC was chosen as the optimum amount to induce 

a transient increase in locomotor activity. 

 
Effects of vMETH have previously not been tested on fly’s behavior. It is known 

that oral administration of METH through food reduces sleep during the night (Andretic 

et al. 2005). To test the motor-activating effect of vMETH on the behavior of flies, we 

exposed flies to different amounts of vMETH (0-200 µg) for 1 minute, 2.5 L/min airflow 

after 8 minutes of heating. From the kinetics graphs (Figure 18A), it can be seen that 

amounts of METH lower than 75 µg induce an increase in locomotion, which is dose 

dependent with similar but longer effects seen for amounts up to 150 µg (Figure 18B). 

Therefore, an optimum amount of 75 μg vMETH was chosen to induce sensitivity, since 

the kinetics of the behavioral response to this dose was the most stable and 

reproducible.  

 
Based on this data, we have concluded that the FlyBong platform can be used 

in research of the motor-activating effect (sensitivity) of vCOC and vMETH. The 

optimized protocol for this consists of 1 minute of 2.5 L/min airflow, following 8 minutes 

of volatilization of 75 µg of COC or METH at 09:00 for wt male flies. From here on, we 

refer to this as standard protocol. 
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Figure 18. Exposure to volatilized METH transiently increases locomotor activity in a dose-

dependent manner in wt males. A) Kinetic graph of locomotion, expressed as number of counts per 

minute for a control group of flies (ctrl) (n=32) exposed to warm air and groups exposed to various 

amounts of volatilized METH: 25 µg (METH 25 µg) (n=32), 75 µg (METH 75 µg) (n=32) or 150 µg (METH 

150 µg) (n=32). Data are plotted as mean activity ± SEM for 32 flies in one minute resolution (all tested 

groups). The shaded gray panel represents locomotor activity 10 minutes before drug exposure, the 

dotted line indicates the time of exposure, and the gray panel is first 10 minutes after the exposure. B) 

Mean locomotor activity ± SEM for amounts of volatilized METH ranging from 25 to 200 µg (n=32 flies 

per treatment) for 10 minutes both before and after METH exposure. Statistical significance p≤0.05; a-

comparison of before to after (within the group using Student’s t-test for dependent samples), b- after in 

control group compared to after in groups exposed to volatilized METH (one-way ANOVA with Dunnett 

post-hoc test). 
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The wt female flies were also tested for the motor activation effect (sensitivity)  

of vCOC and vMETH, by applying the standard protocol (Table 2). From the kinetic 

graphs for vCOC (Suppl. Mat. Figure 3A), it can be seen that 75 µg of COC does not 

induce an increase in locomotion, and is instead comparable to the control group that 

received only warm airflow (1 minute 2.5 L/min air flow after 8 minutes of heating).  An 

increase in locomotion compared to the control group is present when amounts of 

vCOC over 150 µg were applied (Suppl. Mat. Figure 3B). However, the level of 

sensitivity of the female flies is constant for all tested amounts of vMETH (Suppl. Mat. 

Figure 4A,B). These data confirm our previous conclusion that in female flies, the 

method of delivery causes strong motor-activating effect, which interferes with motor-

activating effect of PS. 

 
In order to further validate FlyBong, we compared population-based data 

(Figure 19A) of the standard vCOC and vMETH protocols to analysis of data from 

individual flies (Figure 19B). As for the population data analysis, the first 5 minutes 

before vCOC administration was averaged from all 32 flies in assay, and compared to 

the average locomotor activity of all 32 flies in assay in the first 5 minutes after vCOC 

administration. The same was done for vMETH but for the 10 minutes before and after 

administration. The time intervals selected for population data analysis (5 min for vCOC 

and 10 minutes for vMETH) are based on previously obtained kinetic graphs (Figure 

17A COC and Figure 18A METH). From the population analysis, it can be seen that 

standard protocols for vCOC and vMETH cause a statistically significant increase in 

population locomotor activity compared to the baseline and the control group (Figure 

19A).     

 
The individual data analysis following vCOC administration compared the 

average locomotion of individual flies in the 5 minutes before administration with the 

average locomotion of individual flies 5 minutes after administration. The locomotion of 

the individual fly was then graded as “same” if the average of 5 minutes before and 5 

minutes after were identical, “decrease” if the average of 5 minutes after the exposure 

was lower than 5 min before the exposure, and “increase” if the average of 5 minutes 

after the exposure was higher than before the exposure. The same approach was used 

for vMETH analysis, but with a 10-minute time interval. In control groups, around 30% 

of the flies increased their activity after exposure to warm airflow for 1 minutes of 2.5  
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Figure 19. Standard protocols for administration of COC and METH increase population and 

individual response in wt males. A) Histogram of mean locomotor activity ± SEM for control groups, 

and groups exposed to 75 µg of volatilized COC or METH (n=32 flies per treatment). Activity compared 

before (5 minutes for COC, 10 minutes for METH) and after (5 minutes for COC, 10 minutes for METH) 

exposure. Statistical significance p≤0.05; a-comparison of before to after (within the group using 

Student’s t-test for dependent samples), b- after in control group compared to after in groups exposed 

to volatilized COC and METH (Student’s t-test for independent samples). B) Individual amount of 

locomotor activity before exposure (5 min for COC, 10 min for METH) compared to after exposure (5 

min for COC, 10 min for METH) to 75 µg of volatilized COC (n=32) or METH (n=32). Data are plotted 

as histograms showing the mean of five tests ± SEM. Plotted values represent percentage of flies 

responding to PS, as those that increased locomotion after the first administration compared to the 
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baseline. Obtained values were compared to a control group (n=32) that received warm airflow only (8 

minutes heating, 1 minute exposure and 2.5 L/min airflow). Mann-Whitney U-test for nonparametric 

analysis of two independent samples showed a statistically significant difference, p≤0.05 (*), in the 

locomotion of flies after COC and METH exposure, when compared to the control group.  

 

L/min after 8 minutes of heating, while almost 70%  of flies exposed to vCOC increased 

their activity, and after vMETH exposure over 50% of flies increased their activity 

(Figure 19B). In females, individual data analysis shown that the percentage of flies 

with the same, increased or decreased activity were identical between flies given 100 

µg of vCOC and controls (Suppl. Mat. Figure 3C), and between those given 150 µg of 

vMETH and controls (Suppl. Mat. Figure 4C). These data indicate that analysis at the 

level of individual flies yields significant percentage of population that is sensitive to 

vCOC or vMETH. Reason why increase is not present in all the flies in the population 

remains to be investigated. 

 
4.1.1.4. Locomotor sensitization and time between two administrations 
 

Repeated PS administration of identical amounts of PS leads to a stepwise 

increase in locomotor activity, or locomotor sensitization. It was previously found that 

repeated administrations of vCOC lead to this behavioral endophenotype in flies 

(McClung and Hirsh 1998), but it has yet to be investigated whether flies develop this 

type of behavior after repeated administration of vMETH.   

 
Using the standard protocol, we gave first vCOC administration of 75 µg at 

09:00, followed by a second administration after different time intervals. The time 

intervals tested were: 3 hours after the first administration (at 12:00), 6 hours (15:00), 

8 hours (17:00), 12 hours (21:00), 24 hours (09:00 of the following day), and 30 hours 

(15:00 of the following day). These tests were important in order to optimize the time 

between two exposures, in order to define the peak response to the second dose. The 

minimal time interval between two vCOC administrations that led to a LS phenotype 

was 6 hours (Figure 20A). Shorter time intervals, such as 3 hours (Figure 20B), have 

not increased population locomotor activity, suggesting that vCOC-induced neural 

modulation requires more than three hours for activation of cellular mechanism. The 

maximum time tested between the two exposures that still led to a LS phenotype was 

24 hours (Figure 20B). The standard protocol with a first vCOC administration at 09:00 



60 
 

and a second at 15:00 was also tested on wt female flies. The amount of vCOC used 

in these tests was 100 µg (Suppl. Mat. Figure 5A), since females are sensitive to higher 

 

 

Figure 20. Locomotor sensitization to volatilized COC depends on the time interval between 

exposures. A)  Kinetic graph of the average locomotion (counts per minute) of groups of flies (n=32) 

before (bsl) administration, and after administration of 75 µg volatilized COC, initially at 09:00 (1st) and 

then at 15:00 (2nd). Data are plotted as mean activity ± SEM for 32 flies in one minute resolution (all 

tested groups). The time point 5 minutes immediately before the exposure is represent with a shaded 

gray panel, the dotted line indicates the time of the exposure, and the 5 minutes after the administration 

is represented by a gray panel. B) Histogram of different time intervals between two administrations of 

volatilized COC (75 µg), plotted as an average of population (32 flies) locomotor activity in the 5 minutes 

before (bsl) and after (1st and 2nd) exposure to COC ±  SEM. The control (CTRL) group was exposed 

to warm air only (8 minutes of heating, 1 minute exposure, and 2.5 L/min airflow rate). Statistical 

significance was p≤0.017 within groups; c- baseline to after first administration, d- after first to after 
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second and e - baseline to after second administration (ANOVA for repeated measurements with 

Bonferroni post-hoc test). 

 

amounts of vCOC (Suppl. Mat. Figure 3B). From the kinetic graphs (Suppl. Mat. Figure 

5A) it can be seen that females respond to the first vCOC dose with an increase in 

locomotion, but after the second, the response is same as for the control group. This 

is suggesting that for females both sensitivity and locomotor sensitization require 

different mode of drug administrations in order to exclude artifacts and that a longer 

period between two administrations should be applied. 

 

We used similar procedure to test whether flies can develop LS to vMETH.  Flies 

develop LS after repeated administrations of vMETH when the time between the two 

exposures is 10 hours, which is 4 hours longer than for vCOC (Figure 21A). Shorter or 

longer periods than 10 hours (Figure 21B) did not induce a stepwise increase in 

locomotor activity. This difference between COC and METH may be the consequence 

of their differing pharmacokinetic and pharmacodynamic properties. Testing was also 

conducted on female wt flies in order to see if they can develop LS to repeated 

administration of vMETH. For this test, 150 µg of vMETH was used for both the first 

administration at 09:00 and for the second administration at 19:00. Female flies 

increase their locomotor activity to the first administration of vMETH, but second 

administration did not lead to further increase in locomotor activity (Suppl. Mat. Figure 

6A). Sensitivity and locomotor sensitization in females require different mode of drug 

administrations in order to exclude artifacts and a longer period between two 

administrations should be applied. 
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Figure 21. Locomotor sensitization to volatilized METH depends on the time interval between 

exposures. A)  Kinetic graph of average locomotion (counts per minute) for groups of flies (n=32) before 

(bsl) administration, and after administration to volatilized 75 µg METH, initially at 09:00 (1st) and then 

again at 19:00 (2nd). Data are plotted as mean activity ± SEM for 32 flies in one minute resolution (all 

tested groups). The 10 minutes immediately before the exposure is shown with shaded gray panel, the 

dotted line indicates the time of the exposure, and the 10 minutes after administration is represented 

with a gray panel. B) Histogram of different time interval durations between two administrations of 

volatilized METH (75 µg), plotted as a mean of population (32 flies) locomotor activity in the 10 minutes 

before (bsl) and after (1st and 2nd) exposures to METH ±SEM. The control (CTRL) group was exposed 

to warm air only (8 minutes of heating, 1 minute exposure, and 2.5 L/min airflow rate). Statistical 

significance was p≤0.017 within groups; c- baseline to after first administration, d- after first to after 

second and e - baseline to after second administration (ANOVA for repeated measurements with 

Bonferroni post-hoc test). 

 
In summary, male flies can develop LS after repeated administration of vCOC 

or vMETH (75 µg) with a time interval of 6 hours (for vCOC) or 10 hours (for vMETH), 

between two administrations. This suggests different pharmacodynamics and 

pharmacokinetics mechanisms of COC and METH (German et al. 2015). The sexual 

dimorphism suggests that different protocols would be required for studying male and 

female flies, with regards to airflow, dose and time interval between the two exposures.  

 
For analysis of population data, the locomotor activity in the 5 minutes 

immediately before vCOC administration were averaged from all flies in the assay, and 

compared to the average activity in the 5 minutes immediately after the first and second 

administrations of vCOC. The same analysis was done for vMETH administration, but 
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comparison was performed between the average activity  10 minutes before and after 

the first and second administrations. The time intervals selected for population data 

analysis are based on previous data (Figure 20A and Figure 21A). At the population 

level, both vCOC and vMETH optimized protocols led to a statistically significant 

increase in locomotor activity, when compared to base line and first exposure (Figure 

22A).    

 
Data analysis for vCOC at the individual level required comparing the average 

locomotion of a single fly in the 5 minutes before and the 5 minutes after first and  

 

 

Figure 22. vCOC and vMETH induce LS at population and individual level in wt males. A) 

Histogram of mean locomotor activity ± SEM for the control group, and groups exposed to 75 µg of 

volatilized COC and METH (n=32 flies per treatment) before (bsl 5 minutes for COC, bsl 10 minutes for 



64 
 

METH) and after the first and second exposures (5 minutes for COC, 10 minutes for METH exposure). 

Statistical significance was p≤0.017 within groups; c-comparison of baseline to after first administration, 

d- after first to after second and e - baseline to after second administration (ANOVA for repeated 

measurements with Bonferroni post-hoc test). B) Locomotor activity of individual flies before exposure 

(5 min for COC, 10 min for METH) was compared to after exposure (5 min for COC, 10 min for METH) 

to 75 µg of volatilized COC (n=32) or METH (n=32). Data are plotted as histograms showing the mean 

value of five tests ± SEM. Plotted values represent the percentage of flies that responded with an 

increase in locomotion when the baseline is compared to response to the first administration (SENS) 

and when the same fly shows further increase to the second (LS). Obtained values were compared to 

a control group (n=32) that received warm airflow only (8 minutes heating, 1 minute exposure and 2.5 

L/min airflow). Mann-Whitney U-test for nonparametric analysis of two independent samples showed a 

statistically significant difference, *p≤0.05 for flies which increased locomotion after COC and METH 

acute exposure (SENS)and # p≤0.05 repeated exposure (LS), when compared to the control group. 

 

second administration. The locomotion of each individual fly was then classified as 

„same”, if average of 5 minutes before and 5 minutes after each administration were 

the same, as “decrease” if the average of 5 minutes before was higher than 5 minutes 

after each administration, and as “increase” if the average of 5 minutes before is lower 

than in the 5 minutes after each administration. This same approach was then 

performed for the vMETH analysis, but with a 10 minute-time interval. In the control 

group, around 30% of the flies increased their activity after the first exposure, almost 

70% of flies exposed to vCOC increased activity, and  following  vMETH exposure over 

50% of flies increased their activity (Figure 22B). In the control group only 6% of flies 

showed LS, as indicated by a stepwise increase in locomotor activity, while for both 

vCOC and vMETH over 40% of flies showed LS (Figure 22B). In females, individual 

data analysis showed that similar percentages of flies displayed same, increased and 

decreased activity for each of the control, vCOC and vMETH groups (Suppl. Mat. 

Figure 5B and 6B). 

  

To test if flies will continue to increase their locomotor activity following multiple 

administrations, we exposed flies to three intermittent doses of vCOC and vMETH. 

Analysis of the population shows that flies continue to increase their locomotor activity 

following the third exposure (Figure 23A) however, an important characteristic of 

individual response is not obvious from the population data. Specifically, the 

percentage of flies that are sensitive to each given administration is similar for all three 

doses and varies by around 50%, but of these, only a subpopulation (22%) showed 
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the consecutively increased locomotion to each dose that would indicate locomotor 

sensitization in this assay (Figure 23B). 

 

 

 

Figure 23. Multiple exposures to vCOC and vMETH lead to LS in population response, while 

individual SENS remains constant. A) Histogram of mean locomotor activity ± SEM for groups of flies 

(n=32) both before (bsl) and after administration to volatilized COC (45 µg) and METH (25 µg), firstly at 

09:00 (1st), secondly at 19:00 (2nd) and thirdly on the next day at 09:00 (3rd). Statistical significance 

was p≤0.017 within groups; *-comparison of baseline to after 1st, 2nd and 3rd administration and e- after 

1st to after 3rd (using ANOVA for repeated measurements with Bonferroni post-hoc test). B) Percentage 

of individual flies that showed sensitivity to a single exposure (SENS) and locomotor sensitization to 

three exposures by increasing  locomotor activity to each consecutive exposure (LS) in groups exposed 
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to volatilized COC (COC 45 µg) or METH (METH 25 µg). Data are plotted as histograms showing the 

mean value of five tests ± SEM. Kruskal-Wallis H-test for nonparametric analysis of independent multiple 

samples (SENS on 1st, SENS on 2nd and SENS on 3rd) was used with Dunn's post-hoc test. There was 

no statistical significant difference for COC and METH.  

 

To test if sensitivity or locomotor sensitization is influenced by circadian 

modulation, we administered two doses of vCOC and vMETH with a 12-hour interval. 

These experiments were performed in constant darkness to remove the confounding 

factor of light and to demonstrate if the source of modulation is the activity of the 

endogenous circadian clock.  

 

Sensitivity to the acute vCOC dose did not vary as a function of the circadian 

time at population level (Figure 24A), or individual level as the percentage of flies that 

responded with increased activity at 10:00 did not vary significantly from 22:00 as 

shown by Mann-Whitney U-test  test (Figure 24B). Interestingly, fewer flies showed an 

increased response to the second dose (relative to the first), when it was given at 

22:00, which consequently resulted in a weaker locomotor sensitization. Thus, 

expression of locomotor sensitization is weaker during the subjective night, than during 

the subjective day. This shows that circadian clock modulates cocaine induced 

neuronal plasticity, but not sensitivity to cocaine. 
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Figure 24. Sensitivity to the first dose is independent of the time of day when the first dose is 

applied, while intensity of LS depends on the time of the day. A) Average locomotor activity 

(counts/min) during baseline, 5 minutes before drug exposures (bsl), 5 minutes after the first exposure 

(1st ) and 5 minutes after the second (2nd) exposure to 75 µg of volatilized COC. Average locomotor 

activity (counts/min) during baseline, 10 minutes before drug exposures (bsl), 10 minutes after the first 

exposure (1st ) and 10 minutes after the second (2nd) exposure to 75 µg of volatilized METH. Exposures 

given 12 hours apart to a population of wild type (wt) flies (n=32 for each group), data are plotted as 

mean value of three experiments ± SEM. Statistical significance was p≤0.017; c-comparison of baseline 

to after first administration, d- after first to after second and e - baseline to after second administration 

(all within the group using ANOVA for repeated measurements with Bonferroni post-hoc test). B) 

Percentage of individual flies that showed sensitivity, indicated by an increase in locomotor activity to 

the first exposure of volatilized COC and METH relative to baseline (SENS 1st), flies showing further 

increases in locomotor activity to the second exposure 1st vs 2nd (SENS 2nd) and LS (bsl vs 1st vs. 

2nd). Data are plotted as histograms showing the mean value of five tests ± SEM. Mann-Whitney U-test 

for nonparametric analysis of two independent samples showed a statistically significant difference, 

*p≤0.05 for flies which increased locomotion after second vCOC exposure (SENS 2nd) at 10:00  when 

compared to the group exposed to vCOC at 22:00. 

 

The vMETH population response to a first dose at 22:00 is higher when 

compared to one given at 10:00, while the population response to second dose is lower 

compared to first dose for both cases (Figure 24A). Analysis of individual fly data 

showed difference (non-significant) in sensitivity to the first dose and no difference to 

the second doses of vMETH or LS. This shows that METH differently modulates 

circadian clock than COC. 
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4.1.2. Screening using FlyBong platform 
 

All screens were performed by applying standard protocols for vCOC and 

vMETH (Table 2) and individual data analysis (Table 5). Results are separated into 

three sections. The first section is focused on the testing of SENS and LS to vCOC in 

circadian mutants, performed to validate the FlyBong method in the mutant flies strains 

for which was previously known whether they develop LS or not. Influence of the same 

genes was also tested to vMETH. In the second section, we have applied genetic 

manipulations to test similarities and possible differences between vCOC and vMETH 

pharmacodynamics in vesicular monoamine transporter, dopamine transporter and 

dopamine receptor type 1. We also combined genetic manipulations with 

pharmacological manipulation in monoamine synthesis. Dopamine was manipulated 

using 3-iodo tyrosine (3IY), dopamine, serotonin, octopamine was manipulated using 

reserpine (res), while serotonin and octopamine were modulated using combination of 

L-DOPA and res (res+L-DOPA). The third section is focused on the potential influence 

of redox perturbation by pre-treatment with pro- and antioxidants on the development 

of SENS to acute doses of vCOC or vMETH, and LS on repeated exposures of vCOC 

or vMETH.  

 
4.1.2.1. Involvement of circadian genes in SENS and LS  
 

Studies in Drosophila and mammals have shown that the genes that control 

circadian rhythmicity are involved in the regulation of motor activating and  arousing 

effects of psychostimulants (Andretic et al. 1999, Andretic et al. 2005). To validate 

FlyBong we exposed mutant strains for circadian genes per01, tim01, ClkJrk and cyc01 to 

vCOC. We tested a gene for a neuropeptide pigment dispersing factor (pdf), which 

conveys signals from circadian pacemaker cells in the fly brain to the rest of the brain 

and body (Renn et al. 1999). PDF-positive neurons also express dLmo gene, a 

regulator of LIM-homeodomain proteins, identified as a regulator of cocaine sensitivity 

in Drosophila (Tsai et al. 2004). 

 
At the population level we confirmed that the per, Clk and cyc genes are required 

for locomotor sensitization to vCOC, since locomotor activity after first exposure was 

higher compared to locomotor activity after second exposure (Suppl. Mat. Figure 7A). 

We also confirmed that tim01 and pdf01 mutants behave similar to wt flies, suggesting 

that tim and pdf gene is not required for development of behavioral sensitization (Suppl. 
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Mat. Figure 7A). Individual analysis confirmed the importance for per, Clk and cyc in 

vCOC-induced sensitization (Figure 25A). To determine possible origin of tim and pdf 

gene mutants phenotype, we analyzed population and individual response of all flies 

to two exposures of warm air. Over 50% of the per01, cyc01, tim01 and pdf01 populations 

showed sensitivity to warm air, while over 30% of tim01and pdf01 mutant flies develop 

locomotor sensitization to warm air (Suppl. Mat. Figure 8AB). These data suggest that 

the putative locomotor sensitization of tim01 and pdf01 mutants to cocaine has to be re-

examined, as at least part of that phenotype is not cocaine-specific. Very low fraction 

of per01, ClkJrk and cyc01 flies develops locomotor sensitization to vCOC (Figure 25A) 

as does to warm air (Suppl. Mat. Figure 8B), arguing for impaired mechanisms of 

neuronal plasticity in these mutants. Individual level analysis of FlyBong locomotor 

output and use of appropriate controls offers new information about behavioral 

responses, which would not be obvious when examining only the average population 

response to vCOC. 

 
All circadian mutants, beside ClkJrk showed an increase in SENS when 

compared to wt flies, following acute exposure to vMETH (Figure 25B). LS was lower 

for all tested circadian mutants when compared to wt flies, with only ClkJrk being 

statistically significant (Figure 25B). From the population-level data, all mutants failed 

to develop LS since locomotor activity after first exposure to vMETH was higher 

compared to locomotor activity after second exposure to vMETH (Suppl. Mat. Figure 

7B). In control groups, which did not received vMETH, per01, cyc01, tim01 and pdf01 

showed higher SENS than wt flies or ClkJrk mutants, at both the individual and 

population levels of analysis (Suppl. Mat. Figure 9A,B). These data suggest that the 

putative locomotor sensitization of per01, tim01 and pdf01 mutants to METH has to be 

re-examined, as at least part of that phenotype is not methamphetamine-specific.  

 
It is important to emphasize that ClkJrk, of all the mutants tested, was the least 

sensitive to either vCOC, vMETH or warm air, when studying at both the individual and 

population-levels of analysis. The pdf01 mutants, meanwhile, showed almost the same 

response to vCOC and vMETH on individual and population level as wt flies.  
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Figure 25. Circadian genes are involved in the development of LS, but not SENS in male flies to 

A) vCOC and B) vMETH. The flies were divided into groups according to their genotype: wt- wild type, 

per01- mutant for the period gene, ClkJrk - mutant for the Clock gene, cyc01 - mutant for the cycle gene, 

tim01 - mutant for the timeless gene and pdf01 - mutant for the pigment-dispersing factor gene. The 

protocol for SENS and LS was performed according to Table 2. All tests were performed on n=32 flies 

and repeated five times. Results are reported as a mean of five experiments ± SEM. Kruskal-Wallis H-

test for nonparametric analysis of independent multiple samples was used with Dunn's post-hoc test 

#p<0.05 SENS of wt flies vscircadian mutants  and *p<0.05 LS of wt flies vs circadian mutants  
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4.1.2.2. Aminergic modulation of SENS and LS 

 

a) Genetic manipulation of vesicular monoamine transporter, dopamine 

transporter and dopamine receptor 

 
METH and COC have similar pharmacological and behavioral profiles. However, 

COC and METH exhibit differences in mechanisms of action and pharmacokinetics. 

COC binds to DAT on the presynaptic neuron and reduces levels of DR on the 

postsynaptic neuron, while METH is entering neurons and reversing function of DAT 

and VMAT.  To further validate our platform and to show differences between molecular 

mechanism in motor-activating effects of vCOC and vMETH, we have used mutant 

strains of dopamine transporter (fmn) and dopamine receptor type 1 (dumb). For 

testing VMAT we have used transgenic flies with DOPA decarboxylase (DDC) Gal4 

driver controlling the expression of UAS VMAT RNAi to reduce the level of VMAT in all 

dopaminergic and serotoninergic neurons.  

 
No tested strains affected the response to an acute dose of vCOC when compared 

to wt flies (Figure 26A), while vMETH exposure induced higher sensitivity in DDC-

VMAT transgene flies and dumb mutants (Figure 26B). Repeated vCOC exposures 

significantly reduced LS for the fmn mutants and DDC-VAMT transgene flies, while 

dumb mutants had a LS response that was almost the same as for wt flies (Figure 

26A). Repeated vMETH exposures statistically significantly reduced LS in DDC-VMAT 

transgene, dumb and fmn mutant flies when compared to wt flies (Figure 26B).  
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Figure 26. Genetic manipulations of dopaminergic system affect development of LS, but do not 

affect SENS to A) vCOC and B) vMETH. The flies were divided into groups according to their genotype: 

wt- wild type, dopamine transporter mutant (fmn), transgenic flies with DOPA decarboxylase (DDC) Gal4 

driver and UAS VMAT RNAi (DDC-VMAT) and dopamine receptor type 1 mutant (dumb). The protocol 

for studying SENS and LS was according to Table 2. All tests were performed on n=32 flies and repeated 

five times. Results are reported as a mean of five experiments ± SEM. Kruskal-Wallis H-test for 

nonparametric analysis of independent multiple samples was used with Dunn's post-hoc test.  #p≤0.05 

SENS in wt flies vs  mutants and * p≤0.05 LS in wt flies vs mutants, following PS exposures. 

 

At the level of population, all mutants responded to acute vCOC exposure (Suppl. 

Mat. Figure 10A), in agreement with the observed individual-level data. Based on the 

population data (Suppl. Mat. Figure 10B), only fmn mutants did not respond to acute 

vMETH exposure, while DDC-VMAT and dumb showed increased population 

locomotor activity, in agreement with the observed individual-level data. At the 

population level, all mutants responded with less locomotor activity to second exposure 

when compared to activity after the first exposure for both vCOC and vMETH (Suppl. 

Mat. Figure 10A,B).   

 

From the data obtained, we have concluded that both the dopamine transporter 

(DAT) and dopamine receptor (DR) are important for LS induced by vCOC and vMETH. 

These results were predicted, as COC and METH bind to DAT on the presynaptic 

neuron and reduce levels of DR on the postsynaptic neuron. Previously published data 

in mammals showed that the vesicular monoamine transporter (VMAT) is important for 

COC- and METH-induced LS, which is in agreement with results obtained for COC, 
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but not for METH, in our experiments. One possible explanation for this is that we used 

DOPA decarboxylase (DDC) Gal4 driver, which expressed in all dopaminergic and 

serotoninergic neurons. Since, it is reported that DA synthesis is under the control of 

circadian genes, induced during daytime and repressed during nighttime, it is possible 

that VMAT RNAi is not equally expressed at 15:00, when the second vCOC 

administration occurs, as at 19:00 when the second vMETH administration occurs. 

This suggests that VMAT is important for LS induced by COC, but not METH.  

 

b) Pharmacological manipulation of dopamine, serotonin and octopamine 
 

The wt flies were pre-treated with a variety of chemicals for 48 hours to manipulate 

monoamines: 3-iodo tyrosine (3IY) to reduce DA in whole fly body, reserpine (res) to 

reduce DA, serotonin and octopamine in the brain, or both res and L-DOPA to reduce 

serotonin and octopamine in the brain. None of the three pre-treatments affected 

SENS following acute vCOC exposure, at either the individual (Figure 27A) or 

population level (Suppl. Mat. Figure 11A). The 3IY and res reduced the LS of flies to 

repeated vCOC exposures, when compared to non-treated wt flies, while a similar 

reduction after treatment with res+L-DOPA was observed when compared to non-

treated wt flies (Figure 27A). Population data showed that all three treatments led to 

reduced locomotor activity following the second exposure, when compared to the first 

exposure to vCOC (Suppl. Mat. Figure 11A).  

  
Acute exposure to vMETH slightly increased SENS following all three pre-

treatments (Figure 27B), as was also seen at the population level (Suppl. Mat. Figure 

10B). Repeated vMETH exposures reduced LS after all three treatments (Figure 27B). 

At the population level, a reduction was also seen in locomotion after the second dose, 

relative to the first dose of vMETH (Suppl. Mat. Figure 11B).  

 

Reduction of levels of DA, serotonin and octopamine using reserpine lowered the 

LS of flies to vCOC, compared to the reduction of DA levels only using 3IY. Restoring 

the levels of DA in reserpine-treated flies using L-DOPA surprisingly resulted in lower 

LS compared to the res and 3IY treatments, as levels of DA should be restored. A 

possible explanation is that the L-DOPA used to restore levels of DA can act as an 

antioxidant and lower the LS response to vCOC, as has been reported for TEMPOL 

and similar antioxidants (see below).  
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Figure 27. LS, but not SENS depends on dopamine, serotonin and octopamine to A) vCOC and 

B) vMETH. The flies were divided into groups according to the treatment given: no treatment- wild type 

flies without treatment, 3IY - wt flies pre-treated with 3-iodo tyrosine, res- wt flies pre-treated with 

reserpine, and res+L-DOPA - wt flies pre-treated with both reserpine and L-DOPA. The protocol for 

studying SENS and LS was performed as stated in Table 2, while pre-treatment was performed 

according to Table 1. All tests were performed on n=32 flies and repeated five times. Results are 

reported as a mean of five experiments ± SEM. Kruskal-Wallis H-test for nonparametric analysis of 

independent multiple samples was used with Dunn's post-hoc test. #p≤0.05 SENS  for no treatment   vs  

different pre-treatments and *p≤0.05 LS for no treatment vs different pre-treatments, following PS 

exposures. 
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4.1.2.3. Antioxidant and prooxidant modulation of SENS and LS 

 

Several antioxidants were used to pre-treat male wt flies: quercetin (QUE), 

tyrosol (TYR) and TEMPOL, and prooxidants hydrogen peroxide (H2O2) and paraquat 

(PQ). We find that the antioxidants QUE, TYR and H2O2 significantly lowered SENS to 

acute vCOC exposure, while TEMPOL and PQ did not affect SENS (Figure 28A). In 

the population data, the same effect of acute exposure to vCOC can be seen (Suppl.  

 

 

Figure 28. Effect of antioxidants and prooxidants on SENS, and LS to: vCOC A) and to vMETH 

B). The flies were divided into groups according to their treatment: no treatment- wild type flies without 

treatment, QUE - wt flies pre-treated with quercetin, TYR- wt flies pre-treated with tyrosol, TEMPOL- wt 

flies pre-treated with TEMPOL, H2O2- wt flies pre-treated with hydrogen peroxide, and PQ - wt flies pre-

treated with paraquat. The protocol for studying SENS and LS was according to Table 2, while the pre-

treatment was according to Table 1. All tests were performed on n=32 flies and repeated five times. 



76 
 

Results are reported as a mean of five experiments ± SEM. Kruskal-Wallis H-test for nonparametric 

analysis of independent multiple samples was used with Dunn's post-hoc test. #p≤0.05 SENS for no 

treatment vs different pre-treatments and *p≤0.05 t LS for no treatment vs different pre-treatments, 

following PS exposures. 

 

Mat. Figure 12.A). QUE, TYR and PQ completely abolished LS after repeated 

exposures to vCOC, while TEMPOL reduced LS, and H2O2 did not affect it (Figure 

28A). The same result was seen at the population-level (Suppl. Mat. Figure 12A). 

Antioxidant and prooxidant treatments did not affect SENS to acute vMETH exposure 

(Figure 28B), at either individual or population level (Suppl. Mat. Figure 12B). All 

treatments lowered LS, while TEMPOL, H2O2 and PQ caused a statistically significant 

reduction in LS compared to the non-treated group (Figure 28B). The same result of 

treatments on LS was seen at the population level (Suppl. Mat. Figure 12B). 

 
In an attempt to restore SENS and LS through antioxidant treatments, we 

combined quercetin and tyrosol with hydrogen peroxide and exposed flies to 

QUE+H2O2 and TYR+H2O2. Both combinations not only restored, but also increased 

SENS compared to the non-treated group following acute vCOC exposure (Figure 

29A). At the population level, an increase in locomotion after acute vCOC exposure 

was also seen in both treated groups compared to non-treated groups (Suppl. Mat. 

Figure 13A).  
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Figure 29. Combination of quercetin and tyrosol with hydrogen peroxide restore SENS and 

partially LS to: vCOC A), while reduce LS by not effecting SENS to B) vMETH in wt male flies. 

The flies were divided into groups according to the treatment: no treatment- wild type flies without 

treatment, QUE+ H2O2- wt flies pre-treated with quercetin and hydrogen peroxide, and TYR+ H2O2- wt 

flies pre-treated with tyrosol and hydrogen peroxide. Protocol for SENS and LS was done according 

Table 2, while pre-treatment according Table 1. All test are performed on n=32 and repeated five times. 

Results are reported as mean of five experiments ± SEM. Kruskal-Wallis H-test for nonparametric 

analysis of independent multiple samples was used with Dunn's post-hoc test. #p≤0.05 SENS of no 

treatment vs different pre-treatments and *p≤0.05 LS of no treatment vs different pre-treatments, 

following PS exposures. 

 

Same as  in the case with the antioxidant and prooxidant administered alone, 

the combination treatments did not affect SENS to acute vMETH exposure (Figure 

29B), as can been seen in the population data (Suppl. Mat. Figure 13B). Flies after 

QUE+H2O2 treatment showed lower LS compared to the non-treated group (Figure 

29B), but this LS was comparable to treatment with QUE alone (Figure 28B). 

Treatment with TYR+H2O2 statistically significantly lowered LS compared to LS of the 

non-treated group or to LS of the group treated with TYR alone. The observed effect 

of the combined treatment was also seen in the population-level data, where the 

second vMETH exposure increased locomotion relative to the first vMETH exposure, 

although this was not statistically significant (Suppl. Mat. Figure 13B). 

 

Redox modulation induced by exogenous pro- and antioxidants has an effect 

on SENS and LS after both vCOC and vMETH administration. Both QUE and TYR 
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reduce SENS and abolish LS to vCOC, while H2O2 does not have an influence on this 

parameters. In contrast, combination of QUE and H2O2 or TYR and H2O2 is restoring 

LS to vCOC. QUE, TYR and H2O2 lower LS to vMETH, while combination of QUE and 

H2O2 or TYR and H2O2 additionally lower LS to vMETH. This data suggests an opposite 

role of H2O2 on neuronal modulation in vCOC- and vMETH-induced neuronal plasticity, 

which further suggests its dependence on change in the redox status.  
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4.2. Rewarding effect of PS  

 

To test if flies will voluntary self-administer COC and METH, which would 

indicate rewarding effect of PS in flies, we have used modified CAFÉ assay. Every 24 

hours amount of liquid food containing sucrose and food that in addition contained 

different concentrations of COC and METH was measured. Data are presented as 

preference index (PI) calculated as difference between amount of consumed food with 

the drug and amount of consumed food without the drug, divided with total food 

consumption every 24 hours. Positive PI value indicates that drug is appetitive to flies 

and that they consume more food with the drug compared to food without the drug, 

whereas negative PI values indicate that food with drug is aversive to flies and they 

have lower intake of food with the drug compared to food without the drug.  

  
4.2.1. CAFÉ assay optimization  
 

As part of optimization, we have established that when the capillaries are 

changed every 24 hours only 6 flies per chamber can be used. Humidity inside of the 

chamber is important and we optimized it using a cotton soaked with 1 mL of tap water. 

In this section, we have tested preferential consumption of COC and METH in naive 

flies, and established optimal COC and METH concentrations, which increase PI over 

consecutive days. We also investigated influence of a visual cue location in respect to 

capillary containing drug on preferential consumption.  

 

4.2.1.1. Preferential PS consumption and concentration optimization 

 
To define an optimal concentration that will lead to greatest preferential 

consumption we exposed naive flies to 0.05, 0.10, 0.15, 0.20, 0.50, 1.00 and 1.50 

mg/mL of COC mixed with 100 mM sucrose solution and 0.10, 0.20, 0.30 and 0.40 

mg/mL of METH mixed with 100 mM sucrose solution. Flies could choose between two 

capillaries containing only sucrose solution and two capillaries containing sucrose 

mixed with drug in different concentrations. We used clear feeding lid without any 

markings on the pipette tip, capillary or lid itself. Locations of capillaries with or without 

the drug were the same over 5 consecutive days (Figure 10). Amounts of food 

consumption were measured every 24 hours. From the daily consumption of food with 

and without the drug , PI values were calculated and plotted as average PI value from 

5 days. Our data show that COC concentrations starting from 0.05 to 0.15 mg/mL are 
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appetitive to flies in dose dependent way, while doses higher than 0.20 mg/mL are 

aversive (Figure 30A). 

 

 

 

Figure 30. Preferential consumption of COC and METH is dose-dependent. Flies were exposed to 

two capillary containing non-drug and two capillary containing food with drugs in different concentrations 

over period of 5 days. The experiments were repeated 2 times with 2 tubes each containing 6 flies 

(n=24). From daily consumption of food with and without the drug, daily PI values were calculated and 

plotted as histogram of the mean value of 5 days ± SEM. Control group was exposed only to the food 

without the drug and PI was calculated regarding position of drug capillary in test groups. *p <0.05 in 

relation to the control group, #p <0.05 compared to concentrations of 0.10 mg/mL and 0.15 mg/mL (One-

way ANOVA, Tukey's multiple comparison). A) COC concentration range 0.05, 0.10, 0.15, 0.20, 0.50, 

1.00 and 1.50 mg/mL B) METH concentration range 0.10, 0.20, 0.30, and 0.40 mg/mL.  
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The dose of 0.15 mg/mL was chosen as the optimal COC concentration based on the 

highest average PI value for period of 5 days, and that concentration was used for 

further tests. In METH self-administration experiments, same as in COC, lower doses 

are appetitive to flies, in dose-dependent way starting from 0.10 to 0.20 mg/mL, while 

higher doses starting from 0.30 mg/mL are aversive (Figure 30B). The dose of 0.20 

mg/mL was chosen as the optimal METH concentration based on highest average PI 

value for period of 5 days, and that concentration was used in further tests. In all assays 

control group did not show any preference to certain capillaries, indicating that flies 

exposed to drug were attracted to content of the drug inside of capillary, but not to 

capillary location or some other possible cue from environment. 

 

 

Figure 31. Preferential consumption is increasing for COC and decreasing for METH over 

consecutive days. Males aged 3-5 days were fed in the control group with aqueous solution of sucrose 

in all four capillaries, and in the test groups two capillaries contained a sucrose solution and in the other 

two aqueous solutions of COC at concentration of 0.15 mg/mL and METH at a concentration of 0.20 

mg/mL. The volume of consumed food in each capillary was measured every 24 hours and was 

converted to the preference index (PI). The experiment was repeated 2 times with 2 tubes each 

containing 6 flies (n=24). Data are plotted as histograms of mean value ± SEM. To determine the 

difference between the preference index between days, ANOVA for repeated measurements was used 

followed by Tukey's multiple comparison; *p <0.05. 
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For better understanding of the preferential consumption of COC and METH, 

we have monitored PI value over 4 days in row (Figure 31). Flies showed positive PI 

values for 0.15 mg/mL COC starting from first day. Positive PI values were  present 

during all 4 days of testing, with increasing trend. Positive PI values on the first day of 

exposure were observed with 0.05 mg/mL and 1.00 mg/mL of COC (Suppl. Mat. Figure 

14A). Over consecutive days, preference for lower COC concentration (0.05 mg/mL) 

was present and it was increasing, compared to higher dosage (1.00 mg/mL) for which 

preference was decreasing (Suppl. Mat. Figure 14A). PI value for 0.20 mg/mL METH 

was positive for all 4 days, but compared to 0.15 mg/mL COC it was decreasing over 

consecutive days. For 0.10 mg/mL or 0.30 mg/mL of METH the preference was 

decreasing (Suppl. Mat. Figure 14B). Since control group did not show preference to 

certain side or capillary, we concluded that preference to COC and METH is based on 

rewarding effect of drug, rather than capillary location or environmental cue. Rewarding 

effects of COC seems to be  stronger than rewarding effects of METH. 

 

4.2.1.1. Influence of cue and drug location on preferential consumption 
 

We have shown that flies self-administer COC and METH, and that PI is not due 

to environmental effect or location of capillary with the drug. To test if the flies will 

perform higher PI when capillary containing dug is associated with the cue, we have 

used colored tips in which drug containing capillary  was black. The assay was 

performed according to the scheme shown in the Figure 10, for 0.15 mg/mL COC and 

0.20 mg/mL METH, with (+Q) cue and without (-Q) cue. The results showed  (Figure 

32) that flies that had cue (+Q) associated with COC showed higher PI values 

compared to group without cue on pipette tips (-Q). PI in +Q group was increasing over 

consecutive days, while in -Q group trend was present, but it was not as significant as 

for +Q group. Preferential consumption of METH was also under influence of cue, but 

effect was weaker compared to that observed in COC +Q group. The -Q METH group 

showed high PI value on the first day, but over the days, that value was decreasing. In 

+Q METH group same negative trend was observed, but PI values  were decreasing 

slower than in -Q METH group. Since both COC and METH shoved better stability of 

PI over consecutive days when cue is present, we have decided to use black color as 

a cue in subsequent experiments.  
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These data suggest that flies associate color cue with the location of the drug. 

This indicated that as in mammals, drug consumption  affects the mechanisms of 

learning and memory. This effect is more pronounced for COC, which seems to have 

higher rewarding effect than METH. 

 

 

Figure 32. Preferential consumption depends on cue associated with capillary containing COC 

and METH. In the experiment, males aged 3-5 days were fed in -Q groups with two capillaries contained 

a sucrose solution and in the other two aqueous solutions of COC at concentration of 0.15 mg/mL and 

METH at a concentration of 0.20 mg/mL. Flies in +Q groups were exposed to the same procedure as -

Q group, but drug containing pipette tips were colored black. The volume of consumed food in each 

capillary was measured every 24 hours and was converted to the preference index. The experiment 

was repeated 2 times with 2 tubes each containing 6 flies (n=24). Data are plotted as histograms of 

mean value ± SEM. To determine the difference between the preference index between days in -Q and 

+Q group, t-test for independent samples were performed (*p<0.05), ANOVA for repeated 

measurements was used with Tukey's multiple comparison (#p<0.05) in case of determining difference 

between the preference index between days within the group. 

 

Since the effect of cue was stronger in COC-exposed flies, we tested influence 

of fixed cue location while changing the location of capillary with drug over period of 

three days. All groups received COC in concentration of 0.15 mg/mL. One group had 

fix cue and capillary location (Figure 11) over consecutive days. In second group, cue 

location was fixed, but location of capillary containing drug was changed, every day on 
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different side (Figure 12). Third group had fixed cue location but capillaries were 

switched diagonally every day (Figure 13). If the cue and capillary location are fixed 

over course of consecutive days, PI was increasing (Figure 33). For the second group, 

where capillary location was every day on a different side, PI was alternating over the 

days. Diagonal rotation of capillary with COC leads to decreased PI, as flies were not 

able to identify capillary with the drug. Based on these results, we used fixed cue 

location and fixed drug-containing capillary for all further experiments. These results 

confirm the involvement of learning and memory in preferential consumption of COC.  

 

 

 
Figure 33. Preferential COC consumption over the course of consecutive days depends on the 

location of the drug capillary. All groups were exposed with two capillaries with a solution of sucrose 

and two with a 0.15 mg/mL COC solution. Group “fixed” received daily COC containing capillary at the 

same location, to "sides" group COC was given every day on the other side of the chamber, and for the 

"diagonally" group COC location was changed in diagonals. The experiment was repeated 2 times with 

3 tubes each containing 6 flies (n=36). Data are plotted as histograms of mean value± SEM. To 

determine the difference between the preference index between days in fixed, sides and diagonally 

groups one-way ANOVA was used with Tukey's multiple comparison (*p < 0.05), ANOVA for repeated 

measurements was used with Tukey's multiple comparison (#p < 0.05) in case of determining  difference 

between the preference index between days within the group. 
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4.2.2. Features of addiction in Drosophila 
 

In order to examine whether flies show similar patterns of addictive behavior as 

humans, we have investigated two experimental manipulations: consumption against 

negative consequences and deprivation effect. Flies find bitter taste of quinine aversive 

(Devineni and Heberlein 2009), so we tested whether the flies will self-administer PS 

against bitter taste, and if flies will consume same or higher amount of drug after period 

of deprivation. All assays were performed with fix cue location associated with PS over 

period of 4 or 5 days in a row and concentrations of COC 0.15 mg/mL and METH 0.20 

mg/mL. 

 
4.2.2.1. Relapse induced by deprivation 
 

We started experiment with standard self-administration protocol, in both 

deprived and non-deprived group. Drug containing capillaries were associated with 

cue. After two days we divided flies in two groups. One group proceeded with the 

standard protocol (non-deprived group) while in deprived group drug containing 

capillaries were removed for two days. On the days of deprivation in all four capillaries 

there was a sucrose solution and PI was calculated for the capillaries at sites where 

there was a drug solution on the previous days, so it does not represent drug 

preference but preference for the position of the capillary.  

 
Relapse is usually induced in animal models trough deprivation from the drug, 

or with a period when the drug is absent from animal environment. After a period of 

abstinence, animals are again exposed to the drug showing increased or the same 

drug consumption compared to preference before abstinence. After two-day 

deprivation, (Figure 34A), COC preference index in deprived group was the same as 

on day before deprivation, but it was lower than in non-deprived group (Figure 34A). 

Same protocol applied to METH consumption resulted in an increase in PI when 

compared to day before deprivation and when compared to non-deprived group 

(Figure 34B). These results suggest that, as is the case for ethanol self-administration, 

flies show some elements of relapse after PS withdrawal.  
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Figure 34. Influence of deprivation on preferential COC and METH consumption. During the 5 days 

the amount of food with COC 0.15 mg/mL and METH 0.20 mg/mL was measured against the pure 

sucrose solution and the results were converted to the COC and METH preference index. The 

experiments were repeated 2 times with 3 tubes each containing 6 flies (n=36). The results are 

presented as mean ± SEM. *p <0.05 PI of the deprived group vs non-deprived group at same 5th 

administration day (Student t-test for independent samples) and #p <0.05 PI on second vs fifth day in 

the deprived group (Student t-test for dependent samples). Figure A) shows a comparison of groups 

that each day had a choice between COC solution and pure sucrose solution (without deprivation) and 

groups that did not have access to COC on days 3 and 4. Shaded gray panel represents days of 
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deprivation. Figure B) shows a comparison of non-deprivation group and group that did not have access 

to cocaine on days 3 and 4 for METH. Shaded gray panel represents days of deprivation.  

 
4.2.2.2. Consumption against negative consequence 
 

To test the consumption against negative consequences, we conducted an 

experiment with 3 groups. One group had a choice between sucrose solution and 

sucrose solution containing 300 μM quinine (QIN), the second group had a choice 

between 0.15 mg/mL COC solution or sucrose solution, and the third group had a 

choice between solution of 0.15 mg/mL COC mixed with 300 μM quinine and sucrose 

solution.  

 
 

 
 
Figure 35.  Flies self-administered COC and METH despite the bitter taste of quinine. Flies were 

divided into three groups: 300 μM QIN solution versus sucrose solution, drug solution (COC 0.15 mg/mL 

and METH 0.20 mg/mL) versus sucrose solution and 300 μM QIN and drug (COC 0.15 mg/mL and 

METH 0.20 mg/mL) solution versus sucrose solution. After each of 4 days, the amount of consumed 

solutions was measured and PI was calculated for each of the solutions versus sucrose solution. Data 

are presented as histogram of mean PI ±SEM over 4 days in row. The experiment was repeated 2 times 

with 3 tubes each containing 6 flies (n=36). The differences between the groups were determined by 

one-way ANOVA and Tukey's multiple comparison, *p < 0.05.  

 

Our control group was offered sucrose versus COC and we confirmed that flies 

prefer COC to sucrose solution (average PI of 0.11). When the choice between sucrose 
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and QIN solution was offered, flies avoided QIN capillaries (average PI of -0.24). 

Negative PI (average PI -0.07), was also observed when flies had a choice between 

COC mixed with QIN versus sucrose solution, but this PI was statistically higher 

compared to PI to QIN solution alone (Figure 35). Flies showed negative PI for QIN 

during all four days, while PI increased to positive values for COC mixed with QIN 

(Suppl. Mat. Figure 15A). 

 
The same experiment was repeated with a solution of METH in concentration of 

0.20 mg/mL. Flies showed preference for a solution with METH compared to sucrose 

(average PI 0.18), and avoided QIN solution (control equal to the one from COC 

experiment, mean PI -0.24).  For METH and QIN solution there was positive average 

PI of 0.02. Flies showed negative PI for QIN during all four days, while PI increased to 

positive value  for QIN mixed with METH (Suppl. Mat. Figure 15B). 
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4.2.3. Gene screens using CAFÉ assay  

 

For following screens, we used optimized protocol (Table 6) with fixed cue and 

capillary locations (Figure 10).  

 
4.2.3.1. Circadian genes 

 
Since the circadian genes period, clock and cycle were reported to be 

associated with locomotor sensitization to COC (Andretić et al. 1999), and we 

confirmed that using FlyBong, we wanted to examine the role that circadian genes play 

in preferential consumption of COC and METH. Average PI for COC (Figure 36) for all 

circadian mutants was lower than the preference index of wt flies , but only per01 mutant 

showed statistically significantly lower PI than wt flies. Lower average PI in circadian 

mutants is the consequence of decreasing PI trend over consecutive days (Suppl. Mat. 

Figure 16A). PI on a first day in all mutants is equal to PI of wt flies, but decreased over 

several days.  

 

 

 
Figure 36. Circadian mutants have different influence on preference for COC and METH. During 

four days, flies had a choice between drug solutions of cocaine (COC), 0.15 mg/mL (left panel) and 

methamphetamine (METH), 0.20 mg/mL (right panel) and the sucrose solution. Every 24 hours the 

volume consumed was measured and converted to the Preference Index (PI). Data are presented as 

histogram of mean PI ± SEM over 4 days in row. The experiment was repeated 2 times with 3 tubes 
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each containing 6 flies (n=36). The graph shows the average PI during 4 days for following genotypes: 

wild type (wt), null mutation in period gene (per01), Jrk allele of Clock gene (ClkJrk), and null alleles in 

cycle and timeless gene (cyc01) (tim01). One-way ANOVA and Tukey's multiple comparison (*p <0.05) 

were used to determine the difference between the groups.  

 

Both processes of neuronal plasticity induced by COC, preferential consumption 

and sensitization, are dependent on the same circadian gene per01 suggesting 

potential involvement of this gene in dopamine release associated with rewarding 

effect induced by COC. However, long-term memory formation in this mutant is lower 

compared to wt flies. Since we have established that preference for drugs depends on 

the capillary location and cue, indicating involvement of learning and memory, it is 

possible that self-administration performance is lower in per01 due to learning and 

memory deficits.  

 

Average PI for METH (Figure 36) of all circadian mutants was lower than the 

preference index of wt flies, while per01, ClkJrk and cyc01 mutants showed statistically 

significantly lower PI than wt flies. Lower average PI in circadian mutants is the 

consequence of difference in PI for METH in all circadian mutants during the days 

compared to wt flies (Suppl. Mat. Figure 16B). On the first day PI for METH in per01 

mutants was low and it was increasing over the days, while ClkJrk mutant shown same 

negative PI over the days indicating avoidance of capillary containing METH. In 

contrast to that, PI for METH of cyc01 and tim01 was positive on the first day, but it was 

decreasing over the days.  

 
Both processes of neuronal plasticity induced by METH, preferential 

consumption and sensitization, are depending on the same circadian gene ClkJrk. This 

could suggest involvement of this gene in the dopamine release associated with 

rewarding effect induced by METH. However, ClkJrk flies have defect in feeding and 

visual behavior. This is important since flies orally self-administer METH, and the 

location of capillary containing METH is associated with the cue. 

 

4.2.3.2. Aminergic modulation 
 

Dopamine is the major neurotransmitter involved in the mechanism of COC and 

METH pharmacodynamics. Therefore, we wanted to check whether the vesicular 

monoamine transporter, dopamine transporter and dopamine receptor type 1 mutants 
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had a different preference for COC and METH from wt flies. We used mutant in 

dopamine transporter fumin (fmn), dumb mutant in dopamine receptor type 1 and 

transgenic flies with DOPA decarboxylase (DDC) Gal4 driver and UAS VMAT RNAi to 

reduce the level of VMAT in all dopaminergic and serotoninergic neurons.   

 
Since dopamine transporter is a key target for COC and METH, we have 

expected that fmn mutants will have a different preference for COC and METH 

compared to wt flies. The fmn flies perform lower PI for COC (Figure 37), as a 

consequence of increasing PI in fmn mutants over the days, which start from really 

high negative PI values to almost positive PI values (Suppl. Mat. Figure 17A). This 

indicates that other neurotransmitters besides dopamine are important for COC 

induced reward effect. PI for METH in fmn mutants was statistically lower in 

comparison to wt flies (Figure 37), as a consequence of negative PI values for fmn 

mutants during all days (Suppl. Mat. Figure 17B). 

 

 

Figure 37. Manipulations in monoaminergic system affect preferential preference for COC and 

METH. Flies were divided into groups according to the genotype: wt - wild type, fmn - fumin, dopamine 

transporter mutant, dumb- mutant in dopamine-like receptor 1 and DDC-VMAT - transgene flies with 

DOPA decarboxylase (DDC) Gal4 driver and UAS VMAT RNAi to reduce the level of VMAT in all 

dopaminergic and serotoninergic neurons. During four days, flies had a choice between the COC 0.15 

mg/mL or METH 0.20 mg/mL and the pure solution of sucrose. Every 24 hours, the amount of consumed 

liquids was measured and converted to the preference index (PI). Data are plotted as histograms of four 

days average PI. The experiment was repeated 2 times with 2 tubes each containing 6 flies (n=24). Left 
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panel COC shows the mean index of preferences ± SEM for COC during 4 administrations for each 

genotype, while right panel METH shows the 4 days mean preference index ± SEM for METH and each 

genotype. One-way ANOVA and Tukey's multiple comparison were used to determine the differences 

between the groups (*p <0.05). 

 

The dumb mutants show same PI for COC as wt flies, while in case of METH PI 

is statistically lower than for wt flies (Figure 37). PI for COC in dumb mutants is 

increasing over the days, while PI for METH is decreasing, similar as for wt flies (Suppl. 

Mat. Figure 17A,B). Postsynaptic dopamine receptor type 1 is important for locomotor 

sensitization (Figure 26A,B) to vCOC and vMETH, but in the case of rewarding effect 

it is only important for METH. This data suggests that DA availability via DAT and DA 

action through DR1 are important for METH pharmacodynamics, while COC effect 

involves other monoamines as well. 

 
Manipulation in dopaminergic and serotoninergic vesicular monoamine 

transporters using RNAi, showed that locomotor sensitization (Figure 26A,B) and 

preference to COC and METH depend on functional VMAT (Figure 37). This data 

suggests that VMAT is important for both locomotor and rewarding effect of 

psychostimulant-induced neuronal plasticity. By following PI over the days in DDC-

VMAT transgene flies, it can been seen that PI for COC and METH is increasing over 

the days, starting from negative PI on the first day to almost positive on the last day of 

experiment (Suppl. Mat. Figure 17A,B). We conclude that METH rewarding effect is 

more correlated with dopaminergic activity, since all three proteins DAT, VMAT and 

DR1 are important for METH preference. COC-induced rewarding effect depends on 

not only dopamine, but also on other monoamines, based on evidence of statistically 

lower PI for COC when VMAT is silenced in dopaminergic and serotonergic using 

RNAi.  
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4.3. Biochemical measurements   
 

Biochemical measurement results are divided into three sections. The first 

section focuses on the influence of COC and METH on redox status in male wt flies. 

The second section provides information on the redox status of wt flies pre-treated with 

antioxidants and hydrogen peroxide. Influence of COC and METH on redox status of 

antioxidants and hydrogen peroxide pre-treated flies is also discussed in the second 

section. Third section focuses on antioxidant capacity of all tested antioxidants and 

possible hydrogen peroxide scavenging capacity, based on observed behavioral 

response to vCOC and vMETH.  

 

4.3.1. Effect of PS on redox status 
 

We have measured effects of vCOC and vMETH on activity of antioxidant 

enzymes CAT and SOD, and highly reactive species ROS and H2O2 production after 

single or double exposures, and compared that to the levels in the untreated flies. All 

assays were performed on whole body extracts of wt male flies 3-5 days old.  

 
4.3.1.1. Influence on antioxidant enzymes 
 

Both vCOC and vMETH administrations decrease SOD activity after acute (1st) 

and repeated (2nd) exposures, compared to SOD activity before exposure (Figure 38).  

 

Figure 38. Acute and repeated exposures to vCOC and vMETH decreased total SOD enzyme 

activity.  SOD enzyme activity was quantified in extracts of whole flies as percentage to which whole 

body extract inhibits the oxidation of quercetin in the presence of TEMED. Data are plotted as histograms 

of mean ± SEM  of triplicates. Statistically significant differences (p<0.05) were determined between: 
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before and after first (1st), before and after second (2nd) administration (*) and between first (1st) and 

second (2nd) administration (#) using one-way ANOVA and Tukey's multiple comparison.  

Both single and double exposures to vCOC and vMETH led to increase in CAT 

activity. CAT activity increased stepwise after vCOC exposures, while initial increase 

after single vMETH exposure decreases after second vMETH exposure (Figure 39). 

 

 

Figure 39. Catalase enzyme activity is increased after acute and repeated vCOC and vMETH 

exposures. Catalase enzyme activity was quantitated in extracts of whole flies before, and plotted as 

histogram of mean ± SEM of triplicates. Statistically significant differences (p < 0.05) were determined 

between: before and after first (1st), before and after second (2nd) administration (*) and between first 

(1st) and second (2nd) administration (#) using one-way ANOVA and Tukey's multiple comparison. 

 

4.3.1.2. Influence on ROS and H2O2 production 
 

To see if the change in the activity of antioxidant enzymes is correlated with the 

change of the amount of free radicals, we measured the amount of ROS and H2O2. 

We observed that first exposure to vCOC and vMETH did not increase ROS 

production, while second exposure increased ROS after vCOC, but not after vMETH 

exposure (Figure 40). First exposure decreased H2O2 after vCOC and vMETH 

compared to baseline (Figure 41). Second vCOC exposure increased H2O2 compared 

to baseline and to the first exposure. Repeated vMETH exposures did not increase 

H2O2 compared to first exposure, but the level of H2O2  was lower compared to before 

vMETH exposure.  

It is unexpected that METH did not lead to the increased ROS, but METH  even 

reduced H2O2, mostly because of a stronger effect of METH on DA release compared 

to COC. In the case of vCOC, first dose induced increase in ROS and H2O2, controlled 

by antioxidant enzymes, while after second exposure vCOC is not efficient anymore. 
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Figure 40. vCOC and vMETH lead to different induction of ROS production. Amount of ROS 

production was determined by measuring DHE fluorescence at 485/585 nm from whole body extracts, 

data are plotted as mean ± SEM of triplicates. Statistically significant differences (p<0.05) were 

determined between: before and after first (1st), before and after second (2nd) administration (*) and 

between first (1st) and second (2nd) administration (#) using one-way ANOVA and Tukey's multiple 

comparison. 

 

 

Figure 41. H2O2 production after single and double vCOC and vMETH exposure. H2O2 production 

was measured as H2DCF fluorescence at 515/680 nm from whole body extracts. Statistically significant 

differences (p<0.05) were determined between: before and after first (1st), before and after second (2nd) 

administration (*) and between first (1st) and second (2nd) administration (#) using one-way ANOVA and 

Tukey's multiple comparison. 

 

4.3.1.3. Correlation between parameters 
 

SOD and CAT are endogenous enzyme systems that catalyze free radicals and 

ROS neutralization reactions. Superoxide (O2
•−) is the major precursor for the 

production of other ROS species generated due to the action of various cellular 

mechanisms. SOD converts O2
•− to H2O2, which can be neutralized through the action 
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of CAT. To maintain redox balance, cells increase SOD and CAT activity if levels of 

ROS are elevated. Similarly, elevated H2O2 will increase CAT activity. Inhibition of one 

antioxidant enzyme in this chain, or over-production of ROS and H2O2 induced by PS 

administration could lead to cell oxidative stress. From the correlations in the case of 

vCOC redox status biomarkers, it can be seen (Table 8) that all parameters are 

positively correlated, with exception of SOD and ROS, and SOD and CAT, which are 

negatively correlated. Significant correlations after vCOC exposures are: positive 

correlation in increases of CAT and ROS, and negative correlation between decreased 

SOD and increased CAT. This data suggest that vCOC inhibits SOD activity leading to 

increased ROS amounts, while CAT activation could be the consequence of enhanced 

hydrogen peroxide production resulting from DA and COC metabolism.  

 
Table 8. Correlation between vCOC determined parameters of redox status. Positive correlation is 

indicated as (+) and negative as (-). Statistically significant Pearson correlation coefficient (p<0.05) is 

colored in gray.  

  H2O2 ROS CAT SOD 

H2O2 
    

ROS +    

CAT + +   

SOD + - -  

 

 
The vMETH correlations are negative, with exception of SOD and H2O2, and 

SOD and ROS, which are positive (Table 9). The correlation between CAT and H2O2 

is negative and statistically significant, indicating that as CAT is increasing, H2O2 

production is decreasing. Similar outcome can be seen for SOD and CAT correlation, 

with increasing CAT and decreasing SOD. Overall, vMETH does not induce ROS 

production or increase SOD activity, and amount of H2O2 is decreased, likely because  

of increased CAT activity. 

 

Both vCOC and vMETH inhibit SOD and induce CAT activity, leading to 

negative correlation between these two enzymes. In case of vCOC, both ROS and 

H2O2 are increased, while in case of  vMETH, ROS and H2O2 levels remain the same. 

Differences between vCOC and vMETH are possible due to PS-activated metabolic 

pathways and differences in monoamines involved in PS specific processes of 

neuronal plasticity. Additionally, redox biomarkers for vCOC were measured at 09:00 
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and 15:00, while for vMETH were measured at 09:00 and 19:00 h based on behavioral 

endophenotype of sensitization. It is thus possible that some of the observed effects 

on redox balance could be a consequence of different metabolism due to the time of 

the day. 

  
Table 9. Correlation between vMETH determined parameters of redox status. Positive correlation 

is indicated as (+) and negative as (-). Statistically significant Pearson correlation coefficient (p<0.05) is 

colored in gray.  

  H2O2 ROS CAT SOD 

H2O2 
    

ROS -    

CAT - -   

SOD + + -  
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4.3.2. Exogenous antioxidant and prooxidant treatment 
 

Based on the hypothesis that antioxidant pre-treatment will abolish LS and 

oxidative stress by reducing ROS and H2O2 production after vCOC and vMETH 

exposure, we have quantified redox parameters in wt flies exposed to 18 hour of 

antioxidants (QUE and TYR) and prooxidant H2O2 and compared it to non-treated 

group. 

 
4.3.2.1. Influence on pre-treatment on oxidative status of flies 
 

Pro- and antioxidant pre-treatments did not affect SOD activity (Figure 42A) and 

ROS production (Figure 42B). All pre-treatments decreased H2O2 (Figure 42C), while 

antioxidants increased CAT compared to non-treated group and prooxidant-treated 

group (figure 42D).    
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Figure 42. Influence of anti- and prooxidant pre-treatment on a redox biomarkers.  Data are plotted 

as histograms of mean ± SEM of triplicates. Statistically significant differences (*p<0.05) were 

determined between non-treated and pre-treated groups with QUE, TYR and H2O2 using one-way 

ANOVA and Tukey's multiple comparison. A) SOD enzyme activity was quantitated in extracts of whole 

flies as percentage to which whole body extract inhibits the oxidation of quercetin in the presence of 

TEMED. B) Amount of ROS production was determined by measuring DHE fluorescence at 485/585 

nm. C) H2O2 production was measured as H2DCF fluorescence at 515/680 nm from hole body extracts. 

D) Catalase enzyme activity was quantitated in extracts of whole flies.  
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4.3.2.2. Oxidative status of pre-treated flies exposed to PS  

 

a) Superoxide dismutase  

 
As we have shown previously, pre-treatment with either pro- or antioxidants did not 

change SOD activity. Consistent with previous results of vCOC and vMETH exposures 

in non-treated flies, pre-treated flies had decreased SOD activity after both vCOC and 

vMETH administration (Figure 43A,B). This indicates that pro- and antioxidant have 

negligible effect on SOD activity. 

 

 

 

Figure 43. Change in SOD activity induced by COC or METH is not modulated by anti- and 

prooxidant pre-treatment. SOD enzyme activity was quantitated in extracts of whole flies as 
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percentage to which whole body extract inhibits the oxidation of quercetin in the presence of TEMED. 

Data are plotted as histograms of mean ± SEM of triplicates. Statistically significant differences (p<0.05) 

were determined between: before and after first (1st), before and after second (2nd) administration (#) 

and between first (1st) and second (2nd) administration (+) within groups using one-way ANOVA and 

Tukey's multiple comparison. Statistical differences between non-treated group and all treated groups 

QUE, TYR and H2O2 before, after 1st and after 2nd exposure (*) were evaluated using one-way ANOVA 

and Tukey's multiple comparison (p<0.05).  

 

b) Catalase 

 

Antioxidant treatment had significant effect on CAT activity in vCOC-exposed flies 

(Figure 44A). First, treatment with QUE and TYR significantly increased CAT before 

exposure to vCOC (Figure 42D). Second, after exposure to vCOC, catalase levels 

significantly decreased. H2O2 pre-treatment did not change basal level of CAT activity, 

but prevented the vCOC-induced increase in CAT activity (Figure 44A). Compared to 

vCOC, METH administration had opposite effect on CAT activity  and led to the further 

induction of CAT activity particularly after first exposure (Figure 44B). H2O2 pre-

treatment similarly led to increase in CAT activity after vMETH exposure. 

 

Therefore, it seems that CAT activity was more susceptible to change as 

consequence of pro-, antioxidants and drug treatment. Effects of COC and METH on 

pre-treated flies were opposite. 
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Figure 44. Catalase enzyme activity changes as consequence of antioxidant treatment and COC 

A) and METH exposure B). Catalase enzyme activity was quantified in the extracts of whole flies, and 

plotted as histogram of mean ± SEM of triplicates. Statistically significant differences (p<0.05) between: 

before and after first (1st), before and after second (2nd) administration (#) and between first (1st) and 

second (2nd) administration (+) within groups were evaluated using one-way ANOVA and Tukey's 

multiple comparison. Statistical differences between non-treated group and all treated groups QUE, TYR 

and H2O2 before, after 1st and after 2nd exposure (*) were evaluated using one-way ANOVA and Tukey's 

multiple comparison (p <0.05).   

 

c) Reactive oxygen species 

 

The vCOC increases ROS amount only after second exposure, and that increase 

is diminished in antioxidant pre-treated groups (Figure 45A). Surprisingly, prooxidant 

H2O2 also decreases vCOC-induced ROS production. METH does not lead to 

increased ROS production, and antioxidant treatment lead to decreased ROS levels 

(Figure 45B). Again, H2O2 had similar effect to antioxidants. 

 
Both vCOC and vMETH inhibit SOD and increase CAT activity in untreated flies. In 

antioxidant pre-treated flies, exposure to vCOC decreased activity of SOD and CAT, 

while ROS production is increased only after 2nd exposure. In antioxidant pre-treated 

flies exposure to vMETH did not influence CAT and SOD activity and ROS production, 

compared to non-treated flies. This suggests that antioxidants induce CAT through 

metabolic pathways of antioxidants degradation. CAT up-regulation then suppresses 

CAT activity after vCOC exposure, but increases CAT activity after vMETH 



103 
 

administration. All this suggests that vMETH leads to lower exogenous redox 

perturbation compared to vCOC. It is unexpected that pro- and antioxidants have 

similar effects on ROS. 

 

 

Figure 45. COC A) and METH B) have opposite effects on ROS production. Amount of ROS 

production was determined by measuring DHE fluorescence at 485/585 nm from whole body extracts. 

Data are plotted as mean ± SEM of triplicates. Statistically significant differences (p<0.05) were 

determined between: before and after first (1st), before and after second (2nd) administration (#) and 

between first (1st) and second (2nd) administration (+) within groups using one-way ANOVA and Tukey's 

multiple comparison. Statistical differences between non-treated group and all treated groups QUE, TYR 

and H2O2 before, after 1st and after 2nd exposure (*) were evaluated using one-way ANOVA and Tukey's 

multiple comparison (p<0.05). 
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d) Hydrogen peroxide 

 

Further support for lower susceptibility to exogenous redox perturbation response 

after vMETH exposure is evident from measurement of H2O2. H2O2 quantity decreases 

in pre-treated flies after vMETH exposure, similar to the situation in non-treated flies 

(Figure 46B). In the antioxidant pre-treated flies that decrease is smaller, possibly 

because endogenous antioxidants are less activated in the presence of exogenously 

supplied antioxidants. 

 

 

Figure 46. Antioxidant effect on H2O2 is more pronounced in A) COC than B) METH exposed flies. 

H2O2 production was measured as H2DCF fluorescence at 515/680 nm from whole body extracts. 

Statistically significant differences (p<0.05) were determined between: before and after first (1st), before 
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and after second (2nd) administration (#) and between first (1st)  and second (2nd) administration (+) within 

groups using one-way ANOVA and Tukey's multiple comparison. Statistical differences between non-

treated group and all treated groups QUE, TYR and H2O2 before, after 1st and after 2nd  exposure (*) 

were evaluated using one-way ANOVA and Tukey's multiple comparison (p<0.05).  

 

Again, vCOC exposure lowered H2O2 production, but after second vCOC exposure 

H2O2 levels were higher than after METH treatment. However, antioxidant treatment 

helped in reducing H2O2 spike after second exposure, as it can be predicted from the 

antioxidant effect of exogenously applied antioxidants. 
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4.3.2.3. Correlation between parameters  
 

The vCOC exposure in antioxidant treated flies reverses the correlation between 

CAT and ROS, which is now negative (Table 10) compared to untreated group (Table 

8), where it was positive. Similarly, correlation between SOD and CAT in antioxidant 

treated flies is positive, while in non-treated group exposed to vCOC was negative. 

There are other differences between groups, but they are not statistically significant. 

Overall, major difference between non-treated and antioxidant-treated groups is lower 

CAT activity in antioxidant treated groups.  

 
Table 10. Correlation between vCOC determined parameters of redox status in antioxidant pre-

treated groups (QUE/TYR). Positive correlation is indicated as (+) and negative as (-). Statistically 

significant Pearson correlation coefficient (p<0.05) is colored in gray. Major differences between 

correlations in non-treated (Table 8.) and anti-oxidant treated groups were colored in black.    

 H2O2 ROS CAT SOD 

H2O2     

ROS +/-    

CAT -/+ -/-   

SOD -/+ +/- +/+  

 

Prooxidant-treated and non-treated group exposed to COC have all identical 

correlations, with exception of negative correlation between SOD and H2O2 in 

prooxidant-treated group (Table 11), which was positive in non-treated group (Table 

8). This is consequence of lower CAT activity as it was the case for antioxidant-treated 

group.   

 
Table 11. Correlation between vCOC determined parameters of redox status in prooxidant pre-

treated group. Positive correlation is indicated as (+) and negative as (-). Statistically significant 

Pearson correlation coefficient (p<0.05) is colored in gray. Black colored are Major differences between 

correlations in non-treated (Table 8.) and prooxidant-treated group were colored in black.    

 H2O2 ROS CAT SOD 

H2O2     

ROS +    

CAT + +   

SOD - - -  

 

The vMETH exposure in antioxidant-treated flies reverses correlation between 

ROS and H2O2, so that it becomes positive (Table 12), in comparison to untreated 
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group (Table 9), where it was negative. Other differences between groups are not 

statistically significant. Major differences between untreated and antioxidant-treated 

groups is higher CAT activity in antioxidant-treated groups.  

 
Table 12. Correlation between vMETH determined parameters of redox status in antioxidant pre-

treated groups (QUE/TYR). Positive correlation is indicated as (+) and negative as (-). Statistically 

significant Pearson correlation coefficient (p<0.05) is colored in gray. Major differences between 

correlations in non-treated (Table 9.) and anti-oxidant-treated groups are colored in black.    

 H2O2 ROS CAT SOD 

H2O2     

ROS +/+    

CAT -/- -/-   

SOD +/+ -/+ +/-  

 

Prooxidant-treated and untreated group exposed to METH have similar 

correlations, with exception of positive correlation between ROS and H2O2 in 

prooxidant-treated group (Table 13), which was negative in non-treated group (Table 

9). This is consequence of lower CAT activity compared to antioxidant-treated group.   

 

Table 13. Correlation between vMETH determined parameters of redox status in prooxidant pre-

treated group. Positive correlation is indicated as (+) and negative as (-). Statistically significant 

Pearson correlation coefficient (p<0.05) is colored in gray. Major differences between correlations in 

non-treated (Table 9.) and prooxidant-treated group are colored in black.    

 H2O2 ROS CAT SOD 

H2O2     

ROS +    

CAT - -   

SOD + + -  

 

Antioxidant treatment modulated CAT activity differently for vCOC- and vMETH-

treated groups when compared to non-treated group, which can be the consequence 

of up-regulation of the redox sensitive enzyme mechanism. It is interesting that feeding 

flies with H2O2 as prooxidant did not induce expected increase in redox biomarkers 

such as CAT. Possible explanations can be that H2O2 pre-exposure was too short, 

concentration was not optimized, and H2O2 might have decomposed in the food before 

ingestion. This could ultimately resulted in beneficial rather than negative 

consequences for organism. We base this conclusion on our results where H2O2 pre-
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treatment lowers CAT activity, and is not increasing it, as it would be expected. 

Additionally, all other measured redox biomarkers in H2O2 pre-treated flies were lower 

for both vCOC and vMETH groups, compared to non-treated and antioxidant-treated 

groups. 

Overall, we have summarized all behavior phenotypes and their genetic and 

biochemical characteristics in mammals and Drosophila (Table 14 and Table 15).  

Table 14. COC induced behaviour phenotypes and their genetic and biochemical characteristics 

in mammals and Drosophila. + behaviour endophenotype can be induced and quantify, ↑ increment, 

↓ decrement, ↔ same, # endophenotype is different than wt endophenotype, * endophenotype is same 

as wt endophenotype, - not been published jet, grey difference between Drosophila and mammals. 

Drosophila data are from this work.   

COCAINE 
Drosophila 

melanogaster 
Mammals 

Behaviour 
endophenotype 

Sensitivity + + 

Locomotor sensitization + + 

Self-administration + + 

Redox biomarker 

CAT activity ↑ 
↓ (Macedo et al. 

2005) 

SOD activity ↓ 
↑(Dietrich et al. 

2005) 

ROS production ↑ 
↑(Dietrich et al. 

2005) 

H2O2 ↑ 
↑(Dietrich et al. 

2005) 

Circadian genes 

Locomotor 
sensitization 

per # 
#( Abarca et al. 

2002) 

Clk # 
* (Abarca et al. 

2002) 

cyc # - 

tim * - 

pdf * - 

Self-administration 

per # 
#( Abarca et al. 

2002) 

Clk * 
* (Abarca et al. 

2002) 

cyc * - 

tim * - 

Dopamine 
transporters and 

receptors 

Locomotor 
sensitization 

DAT # # (Hall et al. 2009) 

VMAT # 
# (Wang et 

al.1997) 

DopR # 
# (Lebestky et al. 

2009) 

Self-administration 

DAT * 
* (Rocha et al. 

1998, Sora et al. 
1998) 

VMAT # 
*(Takahashi et al. 

1997) 
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DopR * 
# (Bergman et al. 

1990) 

Locomotor 
sensitization 

Monoamines 

dopamine # # 

serotonin # # 

octopamine # - 

other trace 
monoamine 

# # 

Antioxidant influence # #(Jang et al. 2015) 

Prooxidants influence # - 

 

Table 15. METH induced behaviour phenotypes and their genetic and biochemical 

characteristics in mammals and Drosophila. + behaviour endophenotype can be induced and 

quantify, ↑ increment, ↓ decrement, ↔ same, # endophenotype is different than wt endophenotype, * 

endophenotype is same as wt endophenotype , - not been published jet, grey difference between 

Drosophila and mammals. Drosophila data are from this work.   

METAMPHETANINE 
Drosophila 

melanogaster 
Mammals 

Behaviour 
endophenotype 

Sensitivity + + 

Locomotor sensitization + + 

Self-administration + + 

Redox biomarker 

CAT ↑ 
↑(Koriem et al. 

2012) 

SOD ↓ 
↓(Frenzilli et al. 

2007) 

ROS ↔ ↑(Kita et al. 2009) 

H2O2 ↓ 
↑(Moszczynska 

2017) 

Circadian genes 

Locomotor 
sensitization 

per * - 

Clk # - 

cyc * - 

tim * - 

pdf * - 

Self-administration 

per # 
#( Abarca et al. 

2002) 

Clk # 
* (Abarca et al. 

2002) 

cyc # - 

tim * - 

Dopamine 
transporters and 

receptors 

Locomotor 
sensitization 

DAT # # (Xua et al. 2000) 

VMAT # # (Wang et al.1997) 

DopR # # (Tella 1994) 

Self-administration 

DAT # 
# (Brennan et al. 

2009) 

VMAT # 
*( Takahashi et al. 

1997) 

DopR # 
# (Bergman et al. 

1990) 

Monoamines dopamine # # 
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Locomotor 
sensitization 

serotonin # # 

octopamine # - 

other trace 
monoamine 

# # 

Antioxidant influence # #(Jang et al. 2017) 

Prooxidants influence # - 
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4.3.3. Antioxidant and H2O2 scavenging capacity  
 

In order to determine the antioxidant properties of chemical substances that we 

have used in our experiments, we have performed DPPH assay. We also measured 

the antioxidant capacity of major monoamines that we investigated and manipulated 

in previous experiments, and their precursors. To verify their oxidative effects, we also 

measured antioxidants quercetin (QUE), tyrosol (TYR) and TEMPOL.  

 
We show that L-DOPA has surprisingly high antioxidant capacity relative to 

Trolox standard. This is in agreement with chemical structure of monoamines, since 

molecules with more easily accessible protons show better antioxidant properties in 

DPPH test. Based on this, order of antioxidant potency is dopamine > L-DOPA > 

tyramine. This prediction agrees with our results from DPPH test (Figure 47A). Relative 

to the number of hydroxyl groups bounded to the benzene ring and alkyl groups in 

para- orientation relative to hydroxyl group, we have proposed DPPH antioxidant 

capacity with following order of potency QUE>TYR>TEMPOL, which was 

experimentally confirmed (Figure 47B).  

 
Additionally, we have tested antioxidant properties of quinine, bitter substance 

added to COC and METH solution during testing of preference consumption against 

negative consequences using CAFÉ assay. Reason for this testing was to confirm that 

lower PI for COC mixed with QIN (Figure 35) is not  due to possible 
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Figure 47. Antioxidative capacity of A) DA-dopamine, L-DOPA, TYRA-tyramine and B) QUE- 

quercetin, TYR–tyrosol, TEMPOL and QIN-quinine measured in methanol by DPPH assay. The 

results are presented as a percentage of inhibition of the absorbance at 515 nm (absorption max for 

DPPH) in time points of 0, 5 and 10 minutes for 0.09 mM concentration of all tested molecules. Data are 

plotted as average of triplicates.   

 
antioxidant effect of quinine. We show that quinine has lower antioxidant capacity 

compared to Trolox (Figure 47B), in one proton reaction, and that in the DPPH assay 

it is not a strong antioxidant.  

 
We have suspected that H2O2 pre-treatment does not induce redox enzymes 

because it is scavenged through monoamines. Unfortunately, we could not test the 

hydrogen peroxide scavenging properties of dopamine, L-DOPA, tyramine, 

octopamine and tryptophan due to the very close wavelengths of the absorbance 

maximum in the UV-VIS spectrum, of proposed monoamines and hydrogen peroxide 

(Suppl. Mat. Figure 18A). Additionally, we wanted to check if exogenous QUE, TYR, 

TEMPOL could scavenge hydrogen peroxide and thus lower CAT activity, as we 

previously proposed, but because of the same wavelength of absorbance maximum in 

UV-VIS spectra for QUE, TYR, TEMPOL and hydrogen peroxide it was not possible to 

test this hypothesis (Suppl. Mat. Figure 19B). 
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5. DISSCUSION 

 

The main aim of this thesis is to identify molecular mechanisms of neuronal 

plasticity induced by psychostimulants in forms of two endophenotypes that are 

relevant for the development of addiction: locomotor sensitization and rewarding 

effects. Neural plasticity is within both studied endophenotypes because it takes a 

while to develop endophenotypes, indicating gene activation and changes in neural 

networks. In the data presented, neural plasticity was not directly measured and 

proven, but it was reported as indirect influence on gene modulation. 

 
We have developed a new method for induction and quantification of locomotor 

activity after acute and repeated volatilized PS administration in Drosophila, that we 

named FlyBong. We use a version of previously published method for drug delivery 

(McClung and Hirsh 1998, Bainton et al. 2000, Lease and Hirsh 2005, Heberlein et al. 

2009, Gakamsky et al. 2013), while locomotor activity was quantified using a 

commercially available platform (TriKinetics). Optimized FlyBong protocol: a) induces 

minimal animal handling, b) objectively quantifies the locomotor activity before and 

after drug administration , c) delivers the same amount of drug to individual flies, d) 

allows data analysis  either at single fly or the population level, e) allows simultaneous 

monitoring of locomotor activity of 32 flies. FlyBong can be easily scaled up, and it is 

suitable for genetic screens enabling testing of large number of flies at the same time. 

These high throughput objective and reproducible features of the FlyBong represent 

significant improvement over previously developed methods. 

 
Previously published assays were based on transferring flies before and after 

drug administration, leading to high amount of animal handling, which could lead to low 

reproducibility between experiments (McClung and Hirsh 1998, Gakamsky et al. 2013). 

Flies in FlyBong are not moved or manipulated during experiment, thus lowering 

experimental error due to animal manipulation and increasing reproducibility. To 

achieve this, we placed flies into recording tubes one day before the testing in order to 

habituate them to the novelty of environment. Flies were placed in recording tubes with 

food to avoid starvation, and humidified incubator with light:dark cycles to avoid 

dehydration, temperature and light fluctuations. Overall, we have tried to control 

environmental factors, which ultimately led to robust and reproducible method.    
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Delivering a precise drug amount to the individual flies within a population had 

not been achieved using previously published methods (McClung and Hirsh 1998, 

Bainton et al. 2000, 2005). Attempts to deliver a known amount of drug via injection or 

an airbrush were not simple and required sophisticated animal handling (Dimitrijevic et 

al. 2004, Lease and Hirsh 2005). In a FlyBog, COC and METH are volatilized in a flask 

and delivered to the individual flies in recording tubes. Based on the volume of the 

flask, tubing and dispenser, proportion of vCOC and vMETH condenses on their 

surfaces. We have therefore measured residual of PS on the surface of the recording 

tubes and on the flies, by which we have shown that less than 10% of the volatilized 

PS reaches the individual tube and around 3% of PS reaches the fly. Here we have 

shown that the drug amount received by each fly is equivalent, as the amount of drug 

per tube is independent of recording tube location within the monitor, and does not 

vary significantly between experiments.  

 
The most important improvement of FlyBong, relative to previous systems, is 

that it provides both population and individual measures of locomotor activity. We have 

shown that there is individual variability in flies sensitivity to motor-activating effects of 

vMETH and vCOC, and that only a fraction of these sensitive flies go on to develop 

locomotor sensitization. Our findings are in agreement with previously published 

studies in mammals where it was shown that not all wt animals responded on acute or 

repeated drug administrations (Gulley et al. 2003, Kamenes et al. 2004). Therefore, 

this suggests that FlyBong can be used for the selective breeding of flies that are either 

sensitive and develop locomotor sensitization versus those that do not, in order to 

identify the potential genetic contributions for these behaviors, as an alternative to a 

genetic screen. 

 
We have several results that support conclusion that different neural 

mechanisms govern sensitivity and regulate locomotor sensitization. First, three 

consecutive exposures to vCOC and vMETH each led to similar percentage of flies 

showing sensitivity, while the percentage of the flies that develop locomotor 

sensitization to the three exposures is much lower. Second, sensitivity does not vary 

as a function of circadian time, while locomotor sensitization does. Third, although 

sensitivity of Clk mutant flies is similar to that of wt flies, they fail to develop locomotor 

sensitization.  
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The reason that vCOC was initially selected as a drug of choice for Drosophila 

was that it led to dramatic and concentration-dependent changes in motor behaviour, 

as exemplified by the appearance of uncoordinated, uncommon or stereotypical 

behaviours (McClung and Hirsh 1998). Increases in forward locomotion were observed 

at lower doses, and have been quantified using methods based on oral administration 

of cocaine or its injection into the abdomen (Lebestky et al. 2009, Dimitrijevic et al. 

2004). The 75 μg dose of vCOC, used in our experiments, is the same as dose  used 

in other experiments in which it was delivered from a heated filament positioned in the 

close proximity to a group of ten flies in a vial (McClung and Hirsh 1998, McClung and 

Hirsh 1999, Andretic et al. 1999, Li et al. 2000, Park et al. 2000).  Transition from 

increased locomotion into uncoordinated or stereotypical behavior is dose-dependent. 

As we have used a one IR beam DAM monitor for quantifying locomotor activity, we 

are aware of these limitations and have identified cocaine concentrations that lead to 

dose-dependent change in locomotor activity, but not in other uncoordinated 

behaviors. We show that only 3% of 75 µg of vCOC is sufficient to induce increase in 

locomotor activity. This disadvantage of the system can be improved by applying 

multiple IR beam monitors which than can record activity trough whole DAM tube not 

only in the middle, as we have proposed, since activity occurs also on the left and right 

side of the recording tube. Lack of response with female flies could be addressed by 

testing lower and shorter strengths of airflows compared to males, or by applying free 

base COC which has lower volatilization temperature which than would lower 

environmental factors of  airflow and dehydration. Absence of a wider ranging dose-

response curve using FlyBong argues for the appearance of uncoordinated behaviors 

at higher doses, which in our system could not be recorded as an increase in 

locomotion. Further work with FlyBong could be useful in drug research of other easily 

volatilized substances and genetic screens for new candidate genes underlying 

behavior associated with those drugs.  

 
Population data can sometime differ from individual data and other way around. 

Difference between population and individual results is present when in population 

response increment in locomotion is consequence of small amount of the flies which 

are somewhere around the middle of the tube at time of the exposure, and after drug 

administration they start to increase their locomotion elevating population average, but 

not individual response. Difference between individual and population results, can be 
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the consequence of slight increment of individual fly locomotion, which is not obvious 

in population results, but when analysed at individual level, the effect is stronger.   

 
Using FlyBong we wanted to induce increment in locomotion on acute and 

repeated exposures to vCOC and vMETH. We have shown that wt male flies are 

sensitive to acute vCOC and vMETH exposure (McClung and Hirsch 1998, Andretic et 

al. 2005), and that flies can develop locomotor sensitization to repeated vCOC 

exposures, as it was previously reported for vCOC (McClung and Hirsch 1998). 

Repeated vMETH exposures can also lead to LS, but this was not previously tested in 

flies. Based on the differences in pharmacodynamics and pharmacokinetics between 

COC and METH we have established that minimal time between two exposures for 

inducing locomotor sensitization is 6 hours for vCOC, and 10 hours for vMETH. 

Additionally we have established that females could not be tested for a motor-activating 

effect of PS using the protocol for delivery of volatilized drugs, as environmental 

perturbation (hot air for volatilization) causes significant increase in their locomotion. 

We believe that sensitivity and locomotor sensitization endophenotype can be induced 

and quantified in females, but it would require developing a different mode of drug 

delivery.  

 
METH and COC exhibit some differences and similarities in mechanisms of 

action. By applying optimized method, we have tested the involvement of the vesicular 

monoamine transporter, dopamine receptor type 1 and dopamine transporter in the 

processes of sensitivity and locomotor sensitization to vCOC and vMETH. We have 

shown that, all three proteins must be functional, in order to induce locomotor 

sensitization to volatilized COC and METH, what is in line with behavior observed in 

mammals (Hall et al. 2009, Fukushima et al. 2007). COC  binds to DAT and blocks 

uptake of dopamine from synaptic cleft (German et al. 2015), while fmn mutants have 

elevated dopamine prior to vCOC administration (Faville et al. 2015). We believe that 

acute vCOC administration does not increase population locomotion, since dopamine 

is already elevated, while repeated vCOC exposure cannot induce additional 

increment in locomotion possibly due to oxidative elimination of dopamine induced by 

COC (Meiser et al. 2013). METH reverses function of DAT, which then pumps 

dopamine from cytosol of the presynaptic neuron to the synaptic cleft. Same as for 

COC, we believe that acute vMETH dose does not increase population locomotion 
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since dopamine levels are elevated in fmn mutants, while repeated vMETH exposure 

cannot induce additional increment in locomotion (Kita et al. 2009).   

 
Dopamine like receptor type 1 mutant (dumb) showed response on acute vCOC 

and vMETH exposures at population and individual level. Repeated exposures to 

vCOC and vMETH have not influenced population response, but they lowered 

individual response compared to wt flies. Feeding dumb mutants with COC has not 

induced motor-activating effect as it was case in wt flies (Lebestky et al. 2009).  We 

have shown that vCOC induces around 25% of flies to gradually increase their 

locomotion in comparison to 40% in wt flies. This can be the consequence of higher 

sensitivity of dumb mutants to the warm airflow, rather than to PS (Lebestky et al. 

2009). In addition, we cannot exclude that 75 µg of COC is too high concentration for 

dumb mutants.  

 
Mammal mutants in dopamine receptor type 1 have lower sensitivity to METH 

(Xue et al. 2000), while in our experiments, sensitivity is the same as in wt flies, at 

population and individual level after acute vMETH exposure. The dumb mutants have 

lower level of dopamine prior to drug administration (Faville et al. 2015), but after COC 

and METH acute exposures dopamine levels should be elevated inducing increment 

in locomotion as it was observed from population and individual data. Repeated drug 

exposures have not induced sensitization possible due to lower basal level of 

dopamine in dumb mutants. Vesicular monoamine transporter (VMAT) RNAi was 

expressed in serotoninergic and dopaminergic neurons under DDC driver using UAS 

VMAT - DDC Gal 4 binary expression system. This genetic manipulation has not 

influenced sensitivity, but lowered sensitization to vCOC and vMETH at population and 

individual level compared to wt flies. VMAT2 mutant heterozygote mice shows 

sensitivity to acute COC exposure, while no sensitization was observed after repeated 

exposures (Wang et al. 1997), what is in line with our population and individual data. 

Using VMAT2 mutant heterozygote mice it was reported that sensitization to METH 

was delayed and that sensitivity was the same as in wt mice (Fukushima et al. 2007), 

which agrees with our results. Additionally, we show that VMAT RNAi mutants have 

lower sensitization to vCOC compared to vMETH suggesting importance for DDC 

promotor activity in sensitization to vCOC. VMAT RNAi synthesis is under influence of 

DDC promotor and circadian genes (Ishida et al. 2002.). Second administration to 
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vCOC occurs at 15:00 when serotonin and dopamine synthesis is high, leading to 

higher VMAT RNAi concentration, in comparison to second administration of vMETH 

at 19:00 when concentration of VMAT RNAi is lower, since dopamine and serotonin 

synthesis is silenced.  

 
The potential involvement of monoamines in the development of sensitivity and 

sensitization to vCOC and vMETH was tested by pharmacological reduction of 

dopamine using 3-iodo tyrosine (3IY), and reduction of dopamine, serotonin and 

octopamine was investigated using administration of reserpine (res). We have shown 

that pre-treatment with 3IY and res reduce, but do not abolish, locomotor sensitization 

to COC and METH, without effecting sensitivity. Our results are in agreement with 

previously published results reporting that 3IY and res reduce sensitization on COC in 

flies (Bainton et al. 2000). These results indicate involvement of other trace 

monoamines, such as tyramine, which involvement in the neuronal plasticity induced 

by the drugs was reported (McClug and Hirsh 1998). In attempt to restore dopamine, 

we fed reserpine-pre-treated flies with L-DOPA (Riemensperger et al. 2011). These 

flies have shown sensitivity to acute vCOC and vMETH dose at population and 

individual level, but sensitization was lower for both tested drugs at population and 

individual level in comparison to res-treated flies. We explain this result with potential 

antioxidant properties of L-DOPA (Gow-Chin and Chiu-Luan 1997). We based this 

interpretation on reports demonstrating that pre-treatment of mammals with 

antioxidants lowers sensitization to COC (Jang et al. 2015) and METH (Jang et al. 

2017), and on results from DPPH assay, which showed high antioxidant properties of 

L-DOPA (Figure 47A). L-DOPA-pre-treatment can restore dopamine in flies 

(Riemensperger et al. 2011), presumably through conversion to DA, but antioxidant 

effects of L-DOPA alone on behavior are not excluded.  

 
Using FlyBong platform, we have confirmed that per01, cyc01 and ClkJrk mutants 

are sensitive to the acute dose of vCOC (Andretic et al. 1999), but they do not develop 

locomotor sensitization to the repeated vCOC exposures, at population and individual 

levels. Sensitivity and sensitization in tim01 and pdf01 mutants are the same as in wt 

flies (Andretic et al. 1999, Heberlein et al. 2009, Tsai et al. 2004). This suggests 

separate molecular mechanisms involved in the regulation of behavioral phenotype to 

the acute versus multiple exposures of vCOC, which can be precisely measured using 
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FlyBong. Individual analysis identified an increased sensitivity to vCOC in pdf01 and 

tim01 mutants, which is in accordance with the role of pdf in regulating light-mediated 

arousal (Shimada et al. 2016, Renn et al.1999) and promoting of locomotor activity by 

light in tim01 mutants (Lu et al. 2008). However, locomotor sensitization to vCOC is not 

completely cocaine-specific, but it is also consequence of sensitization to the warm 

airflow. Thus, pdf01 and tim01 flies will require further study in order to determine the 

role that these genes play in neuronal plasticity. Since both mutants have increased 

sensitivity to the warm air and develop locomotor sensitization to the warm air, future 

studies will have to use an alternate mode of delivering COC. Our results from 

population level analysis of pdf01 mutants, show normal sensitivity to vCOC, similar to 

normal sensitivity measured as negative geotaxis of a population of pdf01 mutants to 

vCOC (Tsai et al. 2004). However, our analysis of individual flies defined new 

phenotypes that were not immediately obvious in a population. Thus, analysis of the 

locomotor activity of individual flies, as well as their respective controls, significantly 

aids in differentiating cocaine-specific from non-specific effects.  

 
METH sensitivity and sensitization depend on functional CLK protein, while 

other circadian mutants per01, cyc01, tim01 and pdf01 have shown lower sensitization, 

without effect on sensitivity. This data indicates that COC- and METH-induced 

sensitization endophenotype depends on functional CLK protein, while the role the 

other circadian genes in drug-induced neuroplasticity is drug-dependent. Circadian 

genes modulate the amount of dopamine synthesis and degradation (Golombek et al. 

2014), possibly through direct binding to the promotor region of genes coding for 

dopamine synthesis and degradation enzymes. Drugs induce enhanced production of 

circadian genes (Krishnan et al. 2008, Miyazaki and Asanuma 2008), possibly due to 

the dopaminergic loss by oxidative degradation and increased reactive oxygen species 

(ROS) production. It was shown that circadian genes could sense redox changes 

through the PAS domain contained in their protein structure (Möglich et al. 2009).  

 
The vCOC administration induces larger redox perturbation and depends on 

multiple circadian genes, while vMETH induces lower redox perturbation and depends 

on smaller number of circadian genes. This hypothesis was confirmed by measuring 

ROS and H2O2 production and activity of CAT and SOD enzymes in wt flies exposed 

to acute and repeated vCOC and vMETH. In wt flies, COC induced higher ROS and 
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H2O2 production compared to values before exposures, as well as increased CAT and 

lowered SOD activity. Studies in mammals show that COC lowers CAT activity 

(Macedo et al. 2005), and increases SOD activity, ROS and hydrogen peroxide 

production (Dietrich et al. 2005). Difference between results obtained on mammals and 

our results in CAT and SOD activity could be due to the different pathway of dopamine 

degradation in the flies compared to mammals, since flies do not have MAO and COMT 

enzymes (Paxon et al. 2005). Other possible explanation is that CAT and SOD activity 

were measured in whole body extracts, not only in heads and/or brains of vCOC-

exposed flies, so data on redox perturbation in flies exposed to vCOC is systemic and 

not neuron-specific.  

 
The vMETH sensitization depends only on Clk circadian protein, and shows 

lower susceptibility to exogenous redox perturbation and low amount of ROS 

production. The vMETH induced same amount of ROS but lowered H2O2 production 

compared to values before exposures, and led to increased CAT and lower SOD 

activity. In mammals, METH induces ROS generation (Kita et al. 2009, Kita et al. 2003, 

Moszczynska 2017), but it was shown that ROS generation in METH-exposed animals 

is dopamine dependent (Larsen et al. 2002). Our results are in line with studies in 

mammals, where increased CAT activity (Koriem et al. 2012), and decreased SOD 

activity was reported (Frenzilli et al. 2007). In mammals, METH decreases dopamine 

metabolism catalyzed by MAO and induces dopamine autoxidation leading to 

increases in ROS. Since we have measured the same increase in ROS and decrease 

in H2O2 production in whole body extract it is possible that systemic effect of METH is 

less toxic for flies than effect of vCOC. Furthermore, the second administration of 

vCOC was given at 15:00, while second administration of vMETH was at 19:00. These 

time differences can than influence measured redox markers due to changes of 

metabolic activity, since metabolic activity is higher during day-time and lower at night-

time.  

 
The influence of exogenous pre-treatment with pro- and antioxidant was tested 

on behavioral response to acute and repeated vCOC and vMETH exposure. We have 

shown that both anti- and prooxidants abolish locomotor sensitization, lower sensitivity 

to vCOC, and lower locomotor sensitization without effecting sensitivity to vMETH. This 

data suggests that redox balance is important for vCOC-induced behavior, while less 
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for vMETH-induced behavior. By comparing antioxidant capacity of antioxidant 

quercetin and tyrosol, which we used for pre-treatment, we have shown that vMETH 

sensitization can be explained with quercetin and tyrosol antioxidant capacity. Based 

on that we propose vMETH response as more sensitive to redox perturbations induced 

by prooxidant, while COC sensitization as more susceptible to both pro- and 

antioxidant redox perturbations, which does not depend on antioxidant capacity.  

 
We have measured influence of antioxidants quercetin and tyrosol on redox 

enzymes before and after vCOC and vMETH exposures, in order to correlate redox 

perturbations and exposure to the drugs with changes in behavior. We have shown 

that antioxidant-pre-treated flies have lower SOD, and increased ROS and H2O2 

production after vCOC exposure, as in non-treated flies, and that pre-treatment lowers 

CAT activity, in opposite way than in untreated flies. Antioxidant-pre-treated flies have 

lower SOD, but same ROS and H2O2 production after vMETH exposure, as observed 

in non-treated flies, while CAT activity is lower in contrast to untreated flies. This 

indicates that CAT activity is sensitive to antioxidant effect on behavior and to vCOC 

and vMETH. One potential explanation for this is negative up-regulation of CAT 

through per gene (Krishnan et al. 2008), meaning that increased PER, characteristic 

for exposures to PS, lowers CAT. Another explanation is that antioxidants can non-

enzymatically remove COC and METH oxidative metabolites, which then induce lower 

CAT activity, without effecting SOD activity or ROS and H2O2 production. Since we 

have shown that, unlike vCOC, vMETH behavioral response does not depend on PER 

protein, it is possible that lower CAT induced by antioxidants interfere with PER protein, 

which can be behaviorally seen as lower METH and absent COC sensitization. 

 
Hydrogen peroxide pre-treatment in flies did not affect redox status biomarkers, 

CAT and SOD activity, and ROS and H2O2 production, suggesting that hydrogen 

peroxide does not act as prooxidant. We have shown that hydrogen peroxide pre-

treatment lowers sensitization to vMETH, while vCOC sensitivity and sensitization do 

not depend on hydrogen peroxide pre-treatment. From this data, we hypothesize that 

beside expected prooxidant hydrogen peroxide influence, hydrogen peroxide can 

potentially act as neuromodulator. This effect is present more in vMETH- than in vCOC-

treated groups, since we proposed that  vMETH is more sensitive on redox 

perturbation. One possible explanation was that exogenous hydrogen peroxide is 
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metabolized through endogenous monoamines by hydrogen peroxide scavenging, 

since CAT and SOD have shown no influence of hydrogen peroxide. Unfortunately, we 

could not test in vitro hydrogen peroxide scavenging through monoamines, because of 

the same wavelength of maximal absorbance for hydrogen peroxide and monoamines, 

making it difficult to follow hydrogen peroxide concentration without having effect of 

monoamines. Thus, to test this hypothesis we will have to apply a different approach.  

 
To test the effect of hydrogen peroxide as neuromodulator, we pre-treated flies 

with hydrogen peroxide and antioxidants for which we have shown to abolish LS to 

COC and lower LS to METH. Flies pre-treated with quercetin and hydrogen peroxide 

showed increased response to acute vCOC dose at population and individual level, 

compared to non-treated group, and group treated with only quercetin or hydrogen 

peroxide. At population level, there is no sensitization, but at individual level, around 

10% of flies have shown sensitization. Effect of tyrosol and hydrogen peroxide, as well 

as the combination of quercetin and hydrogen peroxide pre-treatment had the same 

effect on sensitivity and sensitization to vCOC at individual and population level. With 

tyrosol and hydrogen peroxide pre-treatment, 20% of flies in the population has shown 

sensitization to repeated vCOC exposures, compared to 10% for quercetin and 

hydrogen peroxide. This difference can be consequence of higher antioxidant capacity 

of quercetin compared to tyrosol. Quercetin can than reduce the hydrogen peroxide 

effect through reactions in fly food before flies consumes it, or by metabolic removal of 

hydrogen peroxide.  

 
Pre-treatment with antioxidant and hydrogen peroxide did not affect sensitivity 

to vMETH compared to untreated group, but the sensitization was lower compared to 

treatment with only one antioxidant. Since we have already shown that vMETH 

sensitization depends on quercetin and tyrosol antioxidant capacity, and that METH 

response is more sensitive to redox perturbation induced by prooxidant, lower 

response to pre-treatment with combination of quercetin and hydrogen peroxide, 

compared to only quercetin pre-treatment was expected. Similar results were seen for 

pre-treatment with combination of tyrosol and hydrogen peroxide, compared to pre-

treatment with tyrosol alone. Furthermore, by applying combination of hydrogen 

peroxide and antioxidant through food, the antioxidant effect could have occurred in 

the food, before ingestion, which can ultimately lead to the different starting hydrogen 
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peroxide and antioxidant concentrations. At the end, future work on treatment and 

prevention of drug addiction could be orientated on the adjustment of food 

supplements, since we have shown that exogenous pre-treatment with anti- and 

prooxidants can modulate behavioral response. 

 
It was previously reported that flies voluntary self-administer ethanol containing 

solution (Devineni and Heberlein 2009), when they have been offered to choose 

between sweet solution with and without ethanol. Here we show for the first time that 

flies have high preference for COC-containing food, and moderate for METH-

containing food. 

 
The measure that was used for determining preferential consumption was the 

preference index (PI), where positive PI values are associated with the higher drug 

food consumption indicating that drug is appetitive to the flies. Negative PI values are 

associated with the higher consumption of food without the drug, indicating that drug 

is repulsive to the flies. We optimized protocol for COC- and METH self-administration 

by using 100 mM sucrose solution offered to flies through two capillaries, while METH 

and COC were added to other two capillaries. We have adapted capillary feeder 

(CAFÉ) assay used by Devineni and Heberlein in 2009, by optimizing the number of 

flies in the each vial to six, and by controlling humidity.  

By applying optimized assay we have established that flies preferentially self-

administer COC and METH over sugar solutions in a dose-dependent way. Preference 

for COC was increasing over the consecutive days, in the way as it was reported for 

mammals (Bernnan et al. 1990), while preference for METH was decreasing, in a way 

opposite from previous findings in mammals (Bergman et al. 2009). Since in our assay 

the administration is oral, the concentration of offered drugs plays an important role, 

due to bitter taste of COC and METH (Amrein and Bray 2003). In general, lower drug 

concentrations are more appetitive to flies than higher doses. Therefore, it is possible 

that lower preference to METH in flies is due to the oral administration, since in 

mammals METH is delivered by injection. Additionally, METH has anorexic effect, 

which can lead to lower food consumption in flies and smaller PI.  

 
Additional way of testing if preference for PS in flies is influenced by bitter taste 

of drug can be done by testing Proboscis Extension Response (PER). Flies respond 
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with PER to appetitive substances like sugars and fatty acids, and ignore aversive ones 

like bitter or with high salt. Aversive stimuli will also inhibit the PER response elicited 

by the appetitive substances if applied simultaneously on the proboscis. The probability 

of a PER response depends on the hedonic value of the stimuli (e.g. concentration of 

sugar, ratio of bitter:sweet in a mixture) and the internal drive of the fly (e.g. amount of 

starvation). In addition, it would be necessary to test whether attraction to or avoidance 

of COC and METH in flies is odor-dependent. Various assays can be used, such as 

trap assay and T- and Y-maze. Outcomes of such experiments would help in 

elucidating the mechanisms of PS self-administration in flies.  

 
We have shown that preferential consumption of COC and METH includes 

processes of learning and memory (Sanchis-Segura and Spanagel 2006), since 

preference depends on the capillary location and it can be enhanced by adding a visual 

cue that is associated with the drug (Kaun et al. 2011). These results indicate that flies 

will self-administer psychostimulants when they have choice between food with drug 

and food without drug, and that this process might involve action of PS on motivational 

circuits in the brain that control drug-taking behavior, similar as in mammals.  

 
Relapse is usually induced in animal models by withdrawing the drug and after 

a period of abstinence, introducing the drug again. Phenotype of relapse is defined by 

drug consumption that is increased or the same drug consumption as before the period 

of abstinence. We have established that two days of deprivation from COC result in 

the same PI as before the period of deprivation, while METH deprivation is resulting in 

the higher PI. These results indicate that flies show relapse after period of the drug 

deprivation similar to mammals, and that self-administration is based on the rewarding 

effect induced by COC and METH consumption.  

 
We have also tested if the flies self-administer COC and METH in spite of  

negative consequences, and have shown that flies will overcome bitter taste of the 

quinine in order to self-administer COC and METH. Additionally, we have tested 

antioxidant capacity of quinine, in order to remove doubts about lower PI for COC and 

METH mixed with QIN based on possible antioxidant effect of quinine on preferential 

consumption, since anti- and prooxidant were shown to have influence on locomotor-

activating effect of COC and METH. Our results have shown that QIN is weak 
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antioxidant in DPPH assay and that it is not interfering with preference for COC and 

METH.  

 
Dopamine transporter is a key target in COC and METH pharmacodynamics. 

We have shown that fmn mutant flies, carrying mutation in dopamine transporter have 

lower PI for COC and METH. DAT function is dynamically regulated by multiple 

intracellular and extracellular signaling pathways and several protein-protein 

interactions. Such homeostatic regulations can explain that DAT mutation in mammals 

does not affect conditional place preference (CCP) or self-administration of COC 

(Rocha et al. 1998, Sora et al. 2001). In fmn mutant flies, PI for both COC and METH 

is increasing over the days, indicating that dopamine is not the only neurotransmitter 

important for COC- and METH-induced rewarding effect in flies (Sora et al. 2001). 

Indeed, there is abundant evidence that in flies neurotransmitter and neuromodulator 

octopamine predominately conveys rewarding effect (Scaplen and Kaun 2016, 

Mizunami et al. 2015, Waddell 2013). 

 
Mutants in dopamine receptor type 1 (dumb) showed negative PI for METH, 

while preference for COC was the same as in wt flies. Mutations in D1 and D2 receptor 

in mammals block self-administration of COC (Bergman et al. 1990), while D1 and D2 

receptor antagonists reduce METH self-administration (Bernnan et al. 2009). Our 

manipulation of vesicular monoamine transporters using RNAi in dopaminergic and 

serotoninergic neurons has shown that locomotor sensitization and preference to COC 

and METH is dependent on functional VMAT. VMAT2 heterozygote mice show a 

reduction in METH rewarding effect, while their COC rewarding effect remains the 

same (Takahashi et al. 1997). From presented data, we can conclude that METH 

rewarding effect is more correlated with dopamine levels, since all three mutations fmn, 

dumb and DDC-VMAT  demonstrated lower preference for METH, while COC 

preference depends not only on dopamine, but also on other monoamines.  

 
Since the circadian genes period, clock and cycle were reported to be 

associated with locomotor activating effect of COC (Andretic et al. 1999), we have 

tested their effect on preferential consumption to COC and METH. Average PI for COC 

in all circadian mutants was lower than the preference index of wt flies, however only 

for per01 mutants PI was significantly lower than in the wt flies. This data is in line with 

mammalian studies demonstrating that Per1 mutant mice show abolishment of 
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rewarding effect measured in conditioned place preference assay (Abarca et al. 2002), 

and that Clock∆19 mutant mice retained normal preference for COC. Average PI for 

METH was lower in all tested circadian mutants than the preference index of wt flies, 

and significantly lower in per01, ClkJrk and cyc01 mutants.  

 
This data indicates involvement of circadian genes in both processes of 

neuronal plasticity induced by drugs, locomotor sensitization and rewarding effect. The 

COC-induced preferential consumption and sensitization, depending on the same 

circadian gene per, suggests potential importance of this gene in dopamine release 

associated with rewarding effect. Since we have established that preference to drugs 

depends on capillary location and cue, indicating involvement of learning and memory, 

it is possible that self-administration performance is lower in per01 mutant due to poorer 

performance in learning and memory tasks (Sakai et al. 2004). Both locomotor 

sensitization and rewarding effect of METH depend on the same circadian gene Clk 

suggesting the importance of this gene in dopamine release associated with rewarding 

effect induced by METH. However ClkJrk flies have defect in feeding and visual 

behavior (Xu et al. 2008, Mazzoni et al. 2005), which could affect performance in CAFÉ 

assay. 

 
We have shown that Drosophila melanogaster can be used to study 

endophenotypes of locomotor sensitization and self-administration. Our data indicate 

that these two processes of drug-induced neuronal plasticity share common neuronal 

mechanisms since circadian genes, dopamine transporter and dopamine receptors 

play a role in regulating Drosophila behavior.  
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6. CONCLUSION 

 

This work resulted in the development of two new objective and high-throughput 

methods for quantification of motor activating and rewarding effect in Drosophila 

melanogaster, allowing research of the genetic basis of neural plasticity induced by 

PS. Elucidating COC- and METH-induced circadian/redox feedback loops should help 

in the understanding of drug-induced mechanisms of neuronal plasticity, which could 

lead to new discoveries important in the prevention and treatment of addiction. Based 

on the provided data we have concluded: 

 
▪ FlyBong induces increment in locomotion following acute exposure to vCOC 

and vMETH, with minimal time between two exposures for inducing LS of 6 

hours for vCOC, and 10 hours for vMETH 

▪ male and female flies differently responded to acute and repeated vCOC and 

vMETH exposure 

▪ functional dopamine transporter, dopamine receptor and vesicular monoamine 

transporter  are needed for induction of LS to vCOC and vMETH  

▪ reduction of dopamine, serotonin and octopamine, decrease but do not abolish 

LS to vCOC and vMETH, indicating possible involvement of other trace 

monoamines  

▪ per, Clk and cyc genes are involved in the development of LS to vCOC, while 

only Clk is important for vMETH-induced LS 

▪ in contrast to vMETH, vCOC increases ROS and H2O2 production  

▪ redox balance is important for COC-induced LS, while it is less important for LS  

induced by METH administration 

▪ vMETH-induced LS depends on the potency of antioxidant and it is more 

sensitive to prooxidant, whereas LS response to vCOC is equally sensitive to 

both pro- and antioxidant pre-treatment 

▪ susceptibility to pro- and anti-oxidant pre-treatment is based on correlation 

between amount of redox production and circadian genes  

▪ H2O2 pre-treatment did not affect redox status biomarkers, but lowered LS to 

vMETH, while vCOC-induced LS was the same as in wt flies 
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▪ QUE and H2O2, or TYR and H2O2, restored LS to vCOC, and additionally 

lowered LS to vMETH indicating the opposite role of H2O2 on vCOC- and 

vMETH-induced neuronal plasticity 

▪ flies self-administer COC and METH over sugar solutions in dose-dependent 

way 

▪ preferential consumption includes processes of learning and memory 

▪ flies exhibit moderate deprivation effect when drugs were withdrawn  

▪ flies overcame the bitter taste of quinine in order to self-administer COC and 

METH 

▪ COC preferential consumption and LS depend on the same circadian gene per, 

while METH preferential consumption and LS depend on the circadian gene Clk  

▪ rewarding effect of METH is more correlated with dopamine release while COC-

induced rewarding response depends not only on dopamine, but also on other 

monoamines 
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8. LIST OF ABBREVIATIONS USED 

 

3IY = 3-iodotyrosine 

CAFÉ = Capillary Feeder Assay 

CAT = Catalase 

Clk = Clock gene 

COC = Cocaine 

COMT = Catechol-O-amine Transferase   

CPP = Conditional Place Preference  

cyc = Cycle gene 

DA = Dopamine or 4-(2-aminoethyl)benzene-1,2-diol 

DAMS = Drosophila Activity Monitoring System  

DAT = Dopamine Transporter 

DDC = DOPA Decarboxylase 

DOPAC =3,4-dihydroxyphenylacetic acid 

DOPAL = 3,4-dihydroxyphenylacetaldehyde 

DPPH = α,α-diphenyl-β-picrylhydrazyl 

DopR1 = Dopamine Receptor Type 1 

GAL4 = (Yeast) galactose-responsive transcription factor 

HVA= Homovanillic Acid 

H2O2 = Hydrogen Peroxide  

L-DOPA = L-3,4-dihydroxyphenylalanine 

LS = Locomotor Sensitization  

MAO = Monoamine Oxidase  

METH = Methamphetamine 
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PAS = Per: period; ARNT: aryl hydrocarbon receptor nuclear transporter; Sim: single-

minded protein domain 

per = Period gene 

pdf = Pigment Dispersing Factor gene 

PS = Psychostimulant 

PQ = Paraquat 

QUE = Quercetin or 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one 

QIN = Quinine  

res = Reserpine  

RNAi = Ribonucleic acid interference 

ROS = Reactive Oxygen Species  

SENS = Sensitivity  

SOD = Superoxide Dismutase  

TEMPOL = 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl 

tim = Timeless gene 

TRX = trolox 

TYR = Tyrosol or 2-(4-Hydroxyphenyl)ethanol 

TYRA = Tyramine  

UAS = (Yeast) Upstream Activating Sequence 

vCOC = Volatilized Cocaine 

VMAT = Vesicular Monoamine Transporter  

vMETH = Volatilized Methamphetamine 
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Figure 1. Stability of COC and METH after volatilization and effect of warm airflow duration on 

locomotor activity in wt males. A) UV-VIS spectra of COC in range 400-230 nm dissolved in distilled 

water using plastic civets. Random samples after COC volatilization (blue and red) and COC in known 

concentration of 0.3 mg/mL (gray) and 0.5 mg/mL (green) have the same absorption peaks around 230 

and 275 nm characteristic for COC maximum absorbance in UV-VIS spectra. Based on overlapping UV-

VIS spectra of samples after heating and samples without COC heating we did not see any additional 

peaks, so we concluded that COC is stabile after volatilization without metabolites and/or heat induced 

decomposition molecules such as benzoylecgonine, ecgonine and ecgonine methyl ester. B) UV-VIS 

spectra of METH in range 800-200 nm dissolved in distilled water using plastic civets. Random samples 

after METH volatilization (gray and red) and METH in known concentration of 0.3 mg/mL (pink) have 

the same absorption peak around 250 nm characteristic for METH maximum absorbance in UV-VIS 

spectra. Based on overlapping UV-VIS spectra of samples after heating and samples without METH 

heating, we did not see any additional peaks, so we concluded that METH is stable after volatilization 

without metabolites and/or heat induced decomposition molecules. C) Histogram of different durations 

of airflow plotted as mean population locomotor activity (32 flies per group), 5 minutes before and 5 

minutes after exposure to warm air for COC, and 10 minutes before and 10 minutes after exposure to 

warm air for METH. A warm airflow of one minute leads to no significant difference between levels of 

activity before and after exposure in both 5 and 10 minutes, and therefore this time was chosen as the 

standard duration for COC and METH delivery. Data are plotted as mean activity ± SEM for 32 flies in 

5 and 10 minutes resolution (all tested groups). Statistical significant differences (p≤0.05) are indicated 

by a: comparison of activity before and after exposure (within the group using t-test for dependent 

samples) and b: activity in the control group (no airflow) compared to after exposure in groups exposed 

to warm air flow (one-way ANOVA with Dunnett post-hoc test). 
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Figure 2. Effect of warm airflow duration on locomotor activity in wt females. A) Average activity 

± SEM for flies exposed to 1 and 7 minutes duration of 2.5 L/min airflow from a flask heated for 8 minutes, 

without PS. Kinetic graph shows mean ± SEM for 32 flies per group at a resolution of one minute. 

Shaded light gray panel represent locomotor activity 5 minutes, shaded dark gray panel 10 minutes 

before drug exposure, dotted line is time of the exposure, and light gray panel is first 5 minutes and dark 

gray panel 10 minutes after the exposure. B) Histogram of different durations of airflow plotted as mean 

population locomotor activity (32 flies per group) 5 minutes before and 5 minutes after exposure to warm 

air for COC, and 10 minutes before and 10 minutes after exposure to warm air for METH. All tested 

airflows significantly increased population response in female flies. Data are plotted as mean activity ± 

SEM for 32 flies in 5 and 10 minutes resolution (all tested groups). Statistical significant differences 

(p≤0.05) are indicated by a: comparison of activity before and after exposure (within the group using t-

test for dependent samples) and b: activity in the control group (no airflow) compared to after exposure 

in groups exposed to warm airflow (one-way ANOVA with Dunnett post-hoc test). 



157 
 

 

 

 



158 
 

Figure 3. At the individual level, response of female wt flies is not COC-specific. A) Kinetic graph 

of locomotion expressed as number of counts per minute for control group of flies (n=32, exposed to 

warm air), and test group exposed to 75 µg of volatilized COC (n=32), and 100 µg of volatilized COC 

(n=32). The shaded light gray panel indicates the 5 minutes immediately prior to exposure, the dotted 

line is the time of exposure and the light gray panel indicates 5 minutes after exposure. B) Histogram of 

different amounts of volatilized COC (75 to 150 µg) plotted as a mean of the population (32 flies) 

locomotor activity 5 minutes before and 5 minutes after exposure to COC. Statistical significance 

(p≤0.05) is indicated by: a: comparison of activity in the 5 minutes immediately before and after exposure 

(within the group using t-test for dependent samples); b: activity after exposure, compared between the 

control group and group exposed to volatilized COC (one-way ANOVA with Dunnett post-hoc test). C) 

Amount of individual fly locomotor activity 5 min before exposure was compared to 5 minute after 

exposure to 100 µg of volatilized cocaine (n=32) and categorized as an increase, decrease or no change 

and compared to control group (n=32) that received warm airflow. Data are plotted as histograms 

showing the mean value of five tests ± SEM. There is no difference in sensitivity between control group 

and group that received 100 µg of COC tested by Mann-Whitney U-test for nonparametric analysis of 

two independent samples. 
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Figure 4. At the individual level, response of female wt flies is not METH specific. A) Kinetic graph 

of locomotion expressed as number of counts per minute for control group of flies (n=32, exposed to 

warm air), and test group exposed to 75 µg of volatilized METH (n=32), and 150 µg of volatilized METH 

(n=32). The shaded dark gray panel indicates the 10 minutes immediately prior to exposure, the dotted 

line is the time of exposure and the dark gray panel indicates 10 minutes after exposure. B) Histogram 

of different amounts of volatilized METH (75 and 150 µg) plotted as a mean of the population (32 flies) 

locomotor activity 10 minutes before and 10 minutes after exposure to METH. Statistical significance 

(p≤0.05) is indicated by a: comparison of activity in the 10 minutes immediately before and after 

exposure (within the group using t-test for dependent samples); b: activity after exposure, compared 

between the control group and group exposed to volatilized METH (one-way ANOVA with Dunnett post-

hoc test). C) Amount of individual fly locomotor activity 10 min before exposure was compared to 10 

minute after exposure to 150 µg of volatilized METH (n=32) and categorized as an increase, decrease 

or no change and compared to control group (n=32) that received warm airflow. Data are plotted as 

histograms showing the mean value of five tests ± SEM. There is no difference in the sensitivity between 

control group and group that received 150 µg of METH tested by Mann-Whitney U-test for nonparametric 

analysis of two independent samples.  
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Figure 5. Our standard protocol for COC administration does not induce locomotor sensitization 

in wt female flies. A) Kinetic graph of locomotion expressed as number of counts per minute for group 

exposed to twice to volatilized 100 µg COC (n=32), once at 09:00 (1st) and then at 15:00 (2nd), along 

with their baseline (bsl) activity before drug administration. The shaded light gray panel indicates the 5 

minutes immediately prior to exposure, the dotted line is the time of exposure and the light gray panel 

indicates 5 minutes after exposure. Locomotor activity after 2nd exposure is similar to baseline levels. B) 

Amount of individual fly locomotor activity 5 min before exposure was compared to 5 minute after the 

first and second exposures to 100 µg of volatilized cocaine (n=32). These were categorized as an 

increase, decrease, no change or other (flies that did not satisfy criteria for previous three groups), when 

compared the effect on the control group (n=32) that received warm airflow only. Data are plotted as 

histograms showing the mean value of five tests ± SEM. Percentage of flies in each category is similar 

between group that received 100 µg of COC and warm air control tested by Mann-Whitney U-test for 

nonparametric analysis of two independent samples. 
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Figure 6. Our standard protocol for METH administration does not induce locomotor 

sensitization in wt female flies. A) Kinetic graph of locomotion expressed as number of counts per 

minute for group exposed to twice to volatilized 150 µg METH (n=32), once at 09:00 (1st) and then at 

19:00 (2nd), along with their baseline (bsl) activity before drug administration. The shaded dark gray 

panel indicates the 10 minutes immediately prior to exposure, the dotted line is the time of exposure and 

the dark gray panel indicates 10 minutes after exposure. Locomotor activity after 2nd exposure is similar 

to 1st exposure levels. B) Analysis of individual flies from data in A). Amount of individual fly locomotor 

activity 10 min before exposure was compared to 10 minute after the first and second exposures to 150 

µg of volatilized METH (n=32). Data are plotted as histograms showing the mean value of five tests ± 

SEM. These were categorized as an increase, decrease, no change or other (flies that did not satisfy 

criteria for previous three groups), when compared the effect on the control group (n=32) that received 

warm airflow only. Percentage of flies in each category is similar between group that received 150 µg of 
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METH and warm air control and statistically non-significant difference was determined by Mann-Whitney 

U-test for nonparametric analysis of two independent samples. 

 

 

Figure 7. Population data on circadian mutants after PS exposures. Fly populations were either 

wild type (wt) or mutants for circadian genes ClkJrk, per01, cyc01, tim01 and pdf01 (n=32 for each group). 

Statistical significance (p≤0.017) indicated by: c: comparison of baseline activity to after first 

administration; d: comparison of activity after first and second exposures; e: comparison of baseline 

activity to after second administration. All tests were within the group, using ANOVA for repeated 

measurements with Bonferroni post-hoc test. A) Population data for vCOC exposure. Average locomotor 

activity (counts/min) during baseline, 5 minutes before exposures (bsl), 5 minutes after first exposure 

(1st) and 5 minutes after second (2nd) exposure to vCOC. B) ) Population data for vMETH exposure. 

Average locomotor activity (counts/min) during baseline, 10 minutes before exposures (bsl), 10 minutes 

after first exposure (1st) and 10 minutes after second (2nd) exposure to vMETH. 
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Figure 8. Influence of warm airflow on sensitivity and locomotor sensitization of circadian 

mutants controls for COC. A) Average locomotor activity (counts/min) during baseline, 5 minutes 

before exposures (bsl), 5 minutes after first exposure (1st) and 5 minutes after second (2nd) exposure to 

warm air flow (2.5 L/min, for 1 minute after 8 minutes of heating), given 6 hours apart. Fly populations 

were either wild type (wt) or mutants for circadian genes ClkJrk, per01, cyc01, tim01 and pdf01 (n=32 for 

each group). Statistical significance (p≤0.017) indicated by: c: comparison of baseline activity to after 

first administration; d: comparison of activity after first and second exposures; e: comparison of baseline 

activity to after second administration. All tests were within the group, using ANOVA for repeated 

measurements with Bonferroni post-hoc test. B) Percentage of individual flies showing sensitivity or 

increased locomotor activity to a first exposure to warm airflow (2.5 L/min, for 1 minute after 8 minutes 

of heating) and flies showing further increase in locomotor activity to a second exposure (LS). Kruskal-

Wallis H-test for nonparametric analysis of independent multiple samples showed statistical significance 

(p≤0.05) for comparison of wt to mutants in SENS (#) and (*) LS with Dunn's post-hoc test. 
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Figure 9. Influence of warm airflow on sensitivity and locomotor sensitization of circadian 

mutants controls for METH. A) Average locomotor activity (counts/min) during baseline, 10 minutes 

before exposures (bsl), 10 minutes after first exposure (1st) and 10 minutes after second (2nd) exposure 

to warm airflow (2,5 L/min, for 1 minute after 8 minutes of heating), given 10 hours apart. Fly populations 

were either wild type (wt) or mutants for circadian genes ClkJrk, per01, cyc01, tim01 and pdf01 (n=32 for 

each group). Statistical significance (p≤0.017) indicated by: c: comparison of baseline activity to after 

first administration; d: comparison of activity after first and second exposures; e: comparison of baseline 

activity to after second administration. All tests were within the group, using ANOVA for repeated 

measurements with Bonferroni post-hoc test. B) Percentage of individual flies showing sensitivity or 

increased locomotor activity to a first exposure to warm air flow (2.5 L/min, for 1 minute after 8 minutes 

of heating) and flies showing further increase in locomotor activity to a second exposure (LS). Kruskal-

Wallis H-test for nonparametric analysis of independent multiple samples showed statistical significance 

(p≤0.05) for comparison of wt to mutants in SENS (#) and (*) LS with Dunn's post-hoc test. 



166 
 

 

 

 

Figure 10. Population data on dopamine transporters and receptor mutants influence on 

locomotion before and after PS exposures in male flies. Fly populations were either wild type (wt) 

or mutants in dopamine transporter (fmn), dopamine receptor (dumb) and transgene flies in vesicular 

monoamine transporter (DDC-VMAT) (n=32 for each group). Statistical significance (p≤0.017) indicated 

by: c: comparison of baseline activity to after first administration; d: comparison of activity after first and 

second exposures; e: comparison of baseline activity to after second administration. All tests were within 

the group, using ANOVA for repeated measurements with Bonferroni post-hoc test. A) Population data 

for vCOC exposure. Average locomotor activity (counts/min) during baseline, 5 minutes before 

exposures (bsl), 5 minutes after first exposure (1st) and 5 minutes after second (2nd) exposure to vCOC. 

B) Population data for vMETH exposure. Average locomotor activity (counts/min) during baseline, 10 

minutes before exposures (bsl), 10 minutes after first exposure (1st) and 10 minutes after second (2nd) 

exposure to vMETH. 
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Figure 11. Population data on pharmacological reduction of monoamines influence on 

locomotion before and after PS exposures in male wt flies. Fly populations were either wild type 

(wt) or wt pre-treated with 3-iodo tyrosine (3IY), reserpine (res) and reserpine and L-DOPA (res+L-

DOPA) (n=32 for each group). Statistical significance (p≤0.017) indicated by: c: comparison of baseline 

activity to after first administration; d: comparison of activity after first and second exposures; e: 

comparison of baseline activity to after second administration. All tests were within the group, using one-

way ANOVA with Dunnett post-hoc test. A) Population data for vCOC exposure. Average locomotor 

activity (counts/min) during baseline, 5 minutes before exposures (bsl), 5 minutes after first exposure 

(1st) and 5 minutes after second (2nd) exposure to vCOC. B) Population data for vMETH exposure. 

Average locomotor activity (counts/min) during baseline, 10 minutes before exposures (bsl), 10 minutes 

after first exposure (1st) and 10 minutes after second (2nd) exposure to vMETH. 
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Figure 12. Population data on pro- and antioxidant influence on locomotion before and after PS 

exposures in male wt flies. Fly populations were either wild type (wt) or wt pre-treated with anti-

oxidants quercetin (QUE), tyrosol (TYR), TEMPOL and prooxidants hydrogen peroxide (H2O2) and 

paraquat (PQ)  (n=32 for each group). Statistical significance (p≤0.017) indicated by: c: comparison of 

baseline activity to after first administration; d: comparison of activity after first and second exposures; 

e: comparison of baseline activity to after second administration. All tests were within the group, using 

ANOVA for repeated measurements with Bonferroni post-hoc test. A) Population data for vCOC 

exposure. Average locomotor activity (counts/min) during baseline, 5 minutes before exposures (bsl), 5 

minutes after first exposure (1st) and 5 minutes after second (2nd) exposure to vCOC. B) Population data 

for vMETH exposure. Average locomotor activity (counts/min) during baseline, 10 minutes before 

exposures (bsl), 10 minutes after first exposure (1st) and 10 minutes after second (2nd) exposure to 

vMETH. 
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Figure 13. Population data on pro- and antioxidant combination influence on locomotion before 

and after PS exposures in male wt flies. Fly populations were either wild type (wt) or wt pre-treated 

with antioxidant quercetin (QUE) and prooxidant hydrogen peroxide (H2O2) (QUE+ H2O2) and 

antioxidant tyrosol (TYR) and prooxidant hydrogen peroxide (H2O2) (TYR+ H2O2) (n=32 for each group). 

Statistical significance (p≤0.017) indicated by: c: comparison of baseline activity to after first 

administration; d: comparison of activity after first and second exposures; e: comparison of baseline 

activity to after second administration. All tests were within the group, using ANOVA for repeated 

measurements with Bonferroni post-hoc test. A) Population data for vCOC exposure. Average locomotor 

activity (counts/min) during baseline, 5 minutes before exposures (bsl), 5 minutes after first exposure 

(1st) and 5 minutes after second (2nd) exposure to vCOC. B) Population data for vMETH exposure. 

Average locomotor activity (counts/min) during baseline, 10 minutes before exposures (bsl), 10 minutes 

after first exposure (1st) and 10 minutes after second (2nd) exposure to vMETH. 
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Figure 14. Preferential consumption over consecutive days depends on drug concentration. In 

the experiment, male flies aged 3-5 days were fed in the control group with aqueous solution of sucrose 

in all four capillaries, and in the test groups two capillaries contained a sucrose solution and in the other 

two aqueous solutions of drug. The volume of consumed food in each capillary was measured every 24 

hours and was converted to the preference index. The experiment was repeated 2 times with 2 tubes 

each containing 6 flies (n=24). One way ANOVA followed by the  Tukey’s multiple comparison showed 

no differences within groups. A) Control group was exposed to only sucrose solutions during all 4 days, 

while test groups were exposed to COC solution and sucrose solution in concentrations 0.05 and 1.00 
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mg/mL. B) Control group was exposed to only sucrose solutions during all 4 days, while test groups 

were exposed to 0.10 and 0.30 mg/mL METH solution and sucrose solution.  

 

 

 

Figure 15. Flies self-administered COC and METH despite the bitter taste of quinine. Flies were 

divided into three groups: 300 μM QIN solution versus sucrose solution, drug solution (COC 0.15 mg/mL 

and METH 0.20 mg/mL) versus sucrose solution and 300 μM QIN and drug (COC 0.15 mg/mL and 

METH 0.20 mg/mL) solution versus sucrose solution. After each of 4 days, the amount of consumed 
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solutions was measured and PI was calculated for each of the solutions versus sucrose solution. Data 

are presented as mean PI ± SEM over 4 days in row. The experiment was repeated 2 times with 3 tubes 

each containing 6 flies (n=36). One way ANOVA followed by the Tukey’s multiple comparison was used 

to determine differences between groups (*p<0,05).  

 

 

 

Figure 16. PI values for circadian mutants over four days in row for COC and METH. The flies 

were divided into groups according to the genotype: wt- wild type, per01- mutant in period gene, ClkJrk 
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mutants for Clock gen, cyc01 mutants for cycle gen and tim01 mutants for timeless gen. During the four 

days flies had a choice between the dug solutions (COC 0.15 mg/mL and METH 0.20 mg/mL) and the 

sucrose solutions. Every 24 hours, the amount of solutions consumption was measured and converted 

to the preference index. The graph shows the average index of preferences during 4 administrations for 

each genotype. The experiment was repeated 2 times with 3 tubes each containing 6 flies (n=36).  One-

way ANOVA and Tukey's multiple comparison (*p<0.05) were used to determine the difference between 

the groups. A) Preferential consumption for COC represent as mean PI ±SEM for four days in row for 

all five genotypes. B) Preferential consumption for METH represent as mean PI ± SEM for four days in 

row for all five genotypes.  

  



174 
 

 

 

 

Figure 17. PI values for fmn and dumb mutants, and transgene flies DDC-VMAT over 4 days for 

COC and METH. The flies were divided into groups according to the genotype: wt-wild type, fmn-fumin, 

dopamine transporter mutant, dumb mutant in dopamine-like receptor 1 and DDC-VMAT flies caring 

RNAi in dopaminergic and serotonergic neurons. During the four days, flies had a choice between the 

COC 0.15 mg/mL or METH 0.20 mg/mL and the pure solution of sucrose. Every 24 hours, the amount 

of both liquids was measured and converted to the preference index. The experiment was repeated 2 

times with 2 tubes each containing 6 flies (n=24). One-way ANOVA and Tukey's multiple comparison 

(*p<0.05) were used to determine the differences between the groups. A) Preferential consumption for 

COC represent as mean PI ± SEM for four days in row for all four genotypes. B) Preferential 

consumption for METH represent as mean PI ± SEM for four days in row for all four genotypes. 
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Figure 18. UV-VIS spectra of A) hydrogen peroxide, DA, L-DOPA, octopamine, TYRA, tryptophan 

and B) hydrogen peroxide, QUE, TYR , TEMPOL dissolved in methanol using quartz cuvettes in 

wavelength range 350-200 nm. From graph, it can be seen that all tested molecules have same 

absorption peak around 230 nm, which is also maximum of hydrogen peroxide absorbance in UV-VIS 

spectra. Based on overlapping of tested molecules and hydrogen peroxide it is not possible to follow 

hydrogen peroxide decomposition in presence of this molecules by using UV-VIS.  
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Honors and awards 

 

▪ IBRO Travel grant for attending “1st Instituto de Neurociencias PhD Student 
& Postdoc Meeting, Building Neuroscience: The future of a multidisciplinary 
field”, Alicante, Spain, 18.-19. 02.2016. 
 

▪ Scholarship Foundation of the University of Rijeka for the co-financing 
student activities - Student training on summer school Drosophila 
Neurobiology Genes, Circuits & BEHAVIOR, CSHL, New York 26.06.–16. 
07.2015. 

 

▪ Best poser presentation award 5th Student Congress of Neuroscience, NeuRi 
2015. NEURI 2015. 24.-26. April 2015. Rijeka/Rab, Croatia with poster 
presentation of work. „Development of a new high-throughput assay for 
behavioral sensitization to psychostimulants in Drosophila melanogaster“, 
Maja Badurina, Ana Filošević, Ivan Odak, Rozi Andretić Wladowski 

 

▪ "British Scholarship Trust" scholarship for scientific research at UK 
universities 2014. University of Oxford 

 

▪ Two consecutive years 2011th and 2012th with a 4.84 grade point average out 
of 5.00, in the top 10 students at Department of Chemistry, Faculty of 
Science, University of Zagreb, Croatia  

 

Membership in science 
organizations 

▪ from September 2012. member of the "Croatian Chemical Society" in 
sections of Organic and Medicinal Chemistry  
 

▪ from September 2015. member of “Croatian Society for Neuroscience”  
 

▪ from February 2016. member of “Federation of European Neuroscience 
Societies” - FENS 
 

▪ from June 2016. Postgraduate study representative at Student Council of the 
Department of biotechnology  

 

Scientific papers ▪ A. Filošević, S. Al-samarai, R. Andretić Waldowski, High throughput 
measurement of locomotor sensitization to volatilized cocaine in Drosophila 
melanogaster, Methods, Front. Mol. Neurosci. – in the review 
 

▪ S. Kraljević Pavelić, V. Micek, A. Filošević, D. Gumbarević, P. Žurga, A. 
Bulog, Y. Yamamoto, T. Preočanin, J. Plavec, R. Peter, M. Petravić, D. Vikić-
Topić, K. Pavelić, Novel, oxygenated clinoptilolite material efficiently removes 
aluminium from aluminium chloride-intoxicated rats in vivo, Micropor 
Mesopor Mat, DOI: 10.1016/j.micromeso.2017.04.062 (Q1) 

 

Active participation in 
conferences and scientific 

meetings 

 

Oral presentations: 
 

▪ 7th Student Congress of Neuroscience, NeuRi 2017., Rijeka/Rab, Croatia, 
21.-23.04.2017., “Drosophila melanogaster a model organism in the 
addiction research”, A. Filošević, A. Selimović, R. Andretić Waldowski 
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▪ Neurofly 2016., 16th European Neurobiology of Drosophila Conference, 
Platanias, Chania, Crete, Greece, 02.-06.09.2016., „Psychostimulants 
induce behavioral sensitization and tolerance in Drosophila melanogaster“, 
A. Filošević, I. Ćoso, R. Andretić Waldowski  

 

▪ 20th Young Neuroscientist Meeting, Rijeka, Croatia, 30.06.2016., "Complex 
behavior in simple organism: challenges in the quantification of behavior", A. 
Filošević, R. Andretić Waldowski 

 
Poster presentations: 
 

▪ Lisabon addictions, 2nd European conference on addictive behaviours and 
dependencies, Lisabon, Portugal, 24.-26.10.2017., „Self-administration of 
cocaine and metamphetamine in Drosophila melanogaster“, A. Filošević, A. 
Selimović, R. Andretić Waldowski 
 
▪ 2017. IEBMC, Biological Clocks: Mechanisms and Applications, Rijeka, 
Croatia, 6.-8.10.2017., “Circadian genes have phenotype-specific roles in 
psychostimulant-induced neuronal plasticity in Drosophila“, A. Filošević, J. 
Kolobarić, A. Selimović, S. Al-samarai, R. Andretić Waldowski 
 
▪ 6th Croatian Neuroscience Congress, Osijek, Croatia, 16.-18.09.2017., 
„Interaction between redox status and psychostimulants-induced neural 
plasticity in Drosophila“, A. Filošević, J. Kolobarić, S. Al-samarai and R. 
Andretić Waldowski; „Preferential consumption of psychostimulants in 
Drosophila melanogaster: introduction of self-administration paradigm“, A. 
Selimović, A. Filošević, R. Andretić Waldowski 
 
▪ Advances in Biomedical Research, MedILS, Split, Croatia, 03.-07.07. 2017., 
„Circadian Genes and Redox Regulate Neuroplasticity to Psychostimulants in 
Drosophila“, A. Filošević, J. Kolobarić, S. Al Samarai, R. Andretić Waldowski 
 
▪ 19th Annual Genes, Brain and Behavior Meeting of IBANGS, Madrid, Spain, 
15.-18.05.2017., „Drosophila melanogaster as model for studying drug 
addiction – introduction of self-administration paradigm: preferential 
consumption of cocaine in Drosophila melanogaste“ A. Filošević, A. 
Selimović, R. Andretić Waldowski 
 
▪ 7th Student Congress of Neuroscience, NeuRi 2017., Rijeka/Rab, Croatia, 
21.-23.04.2017., „Role of oxidative stress in behavioral sensitization to 
psychostimulants in Drosophila“, S. Al-Samarai, J. Kolobarić, A. Filošević, R. 
Andretić Waldowski 
 
▪ 10th FENS Forum of Neuroscience, Copenhagen, Denmark, 02.-06.07. 
2016., „Defining the behavioral sensitization to psychostimulants in 
Drosophila“, A. Filošević, I. Ćoso, R. Andretić Waldowski 
 
▪ 6th Student Congress of Neuroscience, NeuRi 2016., Rijeka/Rab, Croatia, 
22.-24. 04. 2016., „Characterizing short and long-term behavioral sensitization 
in Drosophila”, A. Filošević, I. Ćoso, R. Andretić Waldowski 
 
▪ “1st Instituto de Neurociencias PhD Student & Postdoc Meeting, Building 
Neuroscience: The future of a multidisciplinary field”,., Alicante, Spain, 18.-19. 
02. 2016., “Influence of diet enriched with polyphenols on indicators of aging 
in Drosophila melanogaster”, A. Filošević, R. Andretić Waldowski 
▪ 5th Croatian Congress of Neuroscience, Split, Croatia, 17.–19.09.2015.,   
“Effect of polyphenol compounds on ageing in Drosophila melanogaster”, A.  
Bolonja, A. Filošević, R.  Andretić Waldowski 
 
▪ CroArtScia 2015. Symposium Technological innovations: atr & science, 
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Zagreb, Croatia, 27.-30.05.2015., „Drosophila melanogaster as model 
organism in neurobiology of addiction - behavioral genetics approach“, A. 
Filošević, R. Andretić Wladowski 
 
▪ 5th Student Congress of Neuroscience, NeuRi 2015., Rijeka/Rab, Croatia, 
24.-26. 04.2015. „Development of a new high-throughput assay for behavioral 
sensitization to psychostimulants in Drosophila melanogaster“, M. Badurina, 
A. Filošević, I. Odak, R. Andretić Wladowski 
 

Student script ▪ N. Malatesti, A. Filošević, Organic chemistry practical for students of 2nd year 
in undergraduate program Biotechnology and Drug research at Department 
of Biotechnology 

 

Science popularization 
projects 

 

▪ 20.-27.07.2017. Višnjan Scientific and Educational center/Astronomical 
Society Višnjan, mentor at Youth Science Camp 3 for 7th and 8th grade 
Primary school talented students on project “Coffee addiction in Drosophila 
melanogaster” 
 

▪ 2014.-2017. Tetragon and “Department Open Day”, as a part of “Festival 
znanosti” project, manager of Department budget, organization and 
preparation of students to perform chemical experiments and coordination of 
administrative duties at Department of Biotechnology 
 

▪ 21.03.2017. FameLab finalist in Croatia  organized by British Council Croatia, 
presentation of scientific theme in terms of science popularizing 
 

▪ 27.09.2013. Researchers' Night 2013. In Rijeka, Croatia, Project financed 
through FP7 EU funds Coordinator of Department activities and active 
participant 

 

 

 

 

 

 

 

 

 

 


